🍎作者简介:硕风和炜,CSDN-Java领域新星创作者🏆,保研|国家奖学金|高中学习JAVA|大学完善JAVA开发技术栈|面试刷题|面经八股文|经验分享|好用的网站工具分享💎💎💎
🍎座右铭:人生如棋,我愿为卒,行动虽慢,可谁曾见我后退一步?🎯🎯🎯
题目链接
题目描述
给你一个字符串 s ,每一次操作你都可以在字符串的任意位置插入任意字符。
请你返回让 s 成为回文串的 最少操作次数 。
「回文串」是正读和反读都相同的字符串。
示例 1:
输入:s = “zzazz”
输出:0
解释:字符串 “zzazz” 已经是回文串了,所以不需要做任何插入操作。
示例 2:
输入:s = “mbadm”
输出:2
解释:字符串可变为 “mbdadbm” 或者 “mdbabdm” 。
示例 3:
输入:s = “leetcode”
输出:5
解释:插入 5 个字符后字符串变为 “leetcodocteel” 。
提示:
1 <= s.length <= 500
s 中所有字符都是小写字母。
求解思路&实现代码&运行结果
暴力递归
求解思路
- 为了能够让同学们更好的理解这个过程,我特意将整个思考的过程以及作图的过程都绘制在下面这张图中,希望可以通过下面这张图更好的帮助你理解整个过程,大家可以结合这张图来理解整个题目的求解思路。
实现代码
注意,代码的实现方式可以有很多,大家根据自己的习惯来就好
class Solution {
public int minInsertions(String s) {
if(s==null||s.length()<=0) return 0;
return process(0,s.length()-1,s);
}
public int process(int left,int right,String s){
if(left>=right) return 0;
if(s.charAt(left)==s.charAt(right)) return process(left+1,right-1,s);
return Math.min(process(left+1,right,s),process(left,right-1,s))+1;
}
}
运行结果
大家不要看到时间超限就害怕,相反,看到这个我们更应该放心,使我们期待的结果。
记忆化搜索
求解思路
- 核心思路就是我们上面的求解过程,如果没有理解可以继续看上面的图解过程。
- 在原来的基础上加缓存表,将结果进行记录,避免重复计算。
实现代码
class Solution {
public int minInsertions(String s) {
if(s==null||s.length()<=0) return 0;
int n=s.length();
int[][] dp=new int[n][n];
for(int i=0;i<n;i++) Arrays.fill(dp[i],-1);
return process(0,s.length()-1,s,dp);
}
public int process(int left,int right,String s,int[][] dp){
if(dp[left][right]!=-1) return dp[left][right];
if(left>=right) return dp[left][right]=0;
if(s.charAt(left)==s.charAt(right)) return dp[left][right]=process(left+1,right-1,s,dp);
return dp[left][right]=Math.min(process(left+1,right,s,dp),process(left,right-1,s,dp))+1;
}
}
运行结果
加个缓存表就是香,通过!
动态规划
求解思路
- 同理,核心求解思路我们上面已经讲过了,此处不同的是原来通过递归,此时我们通过dp数组和循环即可完成。
实现代码
继续改进!
class Solution {
public int minInsertions(String s) {
if(s==null||s.length()<=0) return 0;
int n=s.length();
int[][] dp=new int[n][n];
for(int left=n-1;left>=0;left--){
for(int right=left+1;right<n;right++){
if(s.charAt(left)==s.charAt(right)) dp[left][right]=dp[left+1][right-1];
else dp[left][right]=Math.min(dp[left+1][right],dp[left][right-1])+1;
}
}
return dp[0][n-1];
}
}
运行结果
共勉
最后,我想送给大家一句一直激励我的座右铭,希望可以与大家共勉!