DCMS: Motion Forecasting with Dual Consistency and Multi-Pseudo-Target Supervision
这项工作发布于2023年,作者团队来自于香港科技大学。第一作者Maosheng Ye曾在2020年于CVPR发布了TPCN,它是一种基于点云的运动预测模型。本文提出的DCMS在对驾驶场景进行特征提取时使用的同样是TPCN,相当于DCMS是TPCN的改进工作。
Abstract
本文提出了一种新颖的运动预测框架,并使用了双一致约束(Dual Consistency Constraints)和多伪目标监督(Multi-Pseudo-Target supervision)。
运动预测任务可以被描述为,使用驾驶场景历史观测数据当中的时间和空间状态来对车辆的多模态未来轨迹进行预测。DCMS的关键设计在于它使用了双一致约束,来在训练阶段为模型施加时间和空间扰动来对预测轨迹进行标准化。
此外,本文设计了一种新颖的自集成策略(self-ensembling scheme),通过显式地利用多个标签作为模型的监督,来获取准确的未来轨迹多模态伪标签,这一过程被称为多伪目标监督(Multi-Pseudo-Target supervision)。
本文方法在Argoverse Motion Forecasting v1.1数据集上进行了验证,DCMS达到了leaderboard的第一名。作者表明本文提出的策略可以被加入到其它运动预测方法中,它可以被视为一种通用的训练策略。
Contributions
- 本文提出了双一致约束,来显式地为模型施加时间和空间一致性约束。本文提出的双一致约束是一种通用的训练策略,可以被用于其它运动预测方法来提高性能;
- 本文提出了一种基于自集成的多伪标签训练策略,它在训练期间显式地为模型提供了多模态的监督信息;【自动驾驶轨迹预测的难点之一就是模型需要预测目标代理的多模态未来轨迹,比如输出6条可能的轨迹,但是Ground-Truth轨迹只有一条】
- 本文方法在Argoverse Motion Forecasting v1.1数据集上的性能达到了第一名。
Conclusion
本文提出了DCMS,它是一种有效的自动驾驶运动预测框架。
基于改进的TPCN,本文方法对空间域和时域同时施加一致性约束,从而利用自监督学习来对模型进行训练。
除此之外,本文显式地通过自集成方法来对多模态的未来轨迹进行建模,通过生成多伪目标来为模型显式地提供多模态轨迹的监督信息。
本文方法在Argoverse Motion Forecasting v1.1数据集上取得了第一名。