CompHub 实时聚合多平台的数据类(Kaggle、天池…)和OJ类(Leetcode、牛客…)比赛。本账号会推送最新的比赛消息,欢迎关注!
更多比赛信息见 CompHub主页
以下内容摘自比赛主页(点击文末阅读原文进入)
Part1赛题介绍
题目
RSNA Screening Mammography Breast Cancer Detection
举办平台
主办方
The competition host, the Radiological Society of North America (RSNA) is a non-profit organization that represents 31 radiologic subspecialties from 145 countries around the world.
背景
According to the WHO, breast cancer is the most commonly occurring cancer worldwide. In 2020 alone, there were 2.3 million new breast cancer diagnoses and 685,000 deaths. Yet breast cancer mortality in high-income countries has dropped by 40% since the 1980s when health authorities implemented regular mammography screening in age groups considered at risk. Early detection and treatment are critical to reducing cancer fatalities, and your machine learning skills could help streamline the process radiologists use to evaluate screening mammograms.
Part2时间安排
-
November 28, 2022 - Start Date.
-
February 20, 2023 - Entry Deadline. You must accept the competition rules before this date in order to compete.
-
February 20, 2023 - Team Merger Deadline. This is the last day participants may join or merge teams.
-
February 27, 2023 - Final Submission Deadline.
-
April 14, 2023 - Winners’ Requirements Deadline. This is the deadline for winners to submit to the host/Kaggle their training code, video, method description.
All deadlines are at 11:59 PM UTC on the corresponding day unless otherwise noted. The competition organizers reserve the right to update the contest timeline if they deem it necessary.
Part3奖励机制
-
1st Place - $ 10,000
-
2nd Place - $ 8,000
-
3rd Place - $ 7,000
-
4th - 8th Place(s) - $ 5,000
Because this competition is being hosted in coordination with the Radiological Society of North America (RSNA®) Annual Meeting, winners will be invited and strongly encouraged to attend the conference with waived fees, contingent on review of solution and fulfillment of winners' obligations.
Part4赛题描述
The goal of this competition is to identify breast cancer. You'll train your model with screening mammograms obtained from regular screening.
Part5评价指标
Submissions are evaluated using the probabilistic F1 score (pF1). This extension of the traditional F score accepts probabilities instead of binary classifications.