从零开始学数据分析之——《微积分》第三章 微分中值定理与导数的应用

3.1 中值定理

3.1.1 罗尔定理

定理3.1.1 若函数f(x)满足

(1)在闭区间[a,b]上连续;

(2)在开区间(a,b)内可导;

(3)在区间两端点的函数值相等,即f(a)=f(b),则至少存在一点\xi \in (a,b),使得f'\left ( \xi \right )=0.

3.1.2 拉格朗日定理

定理3.1.2 若函数f(x)满足

(1)在闭区间[a,b]上连续;

(2)在开区间(a,b)内可导,则至少存在一点\xi \in (a,b),使得f'\left ( \xi \right )=\tfrac{f\left ( b \right )-f\left ( a \right )}{b-a}

3.1.3 柯西定理

定理3.1.3 若函数f(x),g(x)满足

(1)在闭区间[a,b]上连续;

(2)在开区间(a,b)内可导,且在(a,b)内每一点有g'\left ( x \right )\neq 0,则至少存在一点\xi \in \left ( a,b \right ),使得\frac{f\left ( b \right )-f\left ( a \right )}{g\left ( b \right )-g\left ( a \right )}=\frac{f'\left ( \xi \right )}{g'\left ( \xi \right )}

3.1.4 泰勒定理

定理3.1.4 若函数f(x)在含有x_{0}的某个开区间(a,b)内具有直到n+1阶导数,则在区间(a,b)上,f(x)可以表示为\left ( x-x_{0}\right )的一个n次多项式与一个余项R_{n}\left ( x \right )的和,即

f\left ( x \right )=f\left ( x_{0} \right )+f'\left ( x_{0} \right )\left ( x-x_{0} \right )+\frac{f''\left ( x_{0} \right )}{2!}\left ( x-x_{0} \right )^{2}+\cdot \cdot \cdot +\frac{f^{n}\left ( x_{0} \right )}{n!}\left ( x-x_{0} \right )^{n}+R_{n}\left ( x \right )

3.2 洛必达法则

3.2.1 \frac{0}{0}\frac{\infty }{\infty }型不定式

洛必达法则1 若函数f(x),g(x)满足

(1)\lim_{x\rightarrow x_{0}}f\left ( x \right )=\lim_{x\rightarrow x_{0}}g\left ( x \right )=0(或∞)

(2)在点x_{0}的某邻域内(x_{0}点可除外)可导,且有g'\left ( x \right )\neq 0

(3)\lim_{x\rightarrow x_{0}}\frac{f'\left ( x \right )}{g'\left ( x \right )}=a(或∞),则

\lim_{x\rightarrow x_{0}}\frac{f\left ( x \right )}{g\left ( x \right )}=\lim_{x\rightarrow x_{0}}\frac{f'\left ( x \right )}{g'\left ( x \right )}=a(或∞)

3.2.2 其他类型的不定式

乘积形式、和差形式、幂指形式

3.3 函数单调性与曲线凸凹性的判别法

 3.3.1 函数单调性的判别法

定理3.3.1 设函数f(x)在区间[a,b]上连续,在区间(a,b)内可导,且其导函数f'(x)不变号

(1)若f'(x)>0,则函数f(x)在[a,b]内单调增加;

(2)若f'(x)<0,则函数f(x)在[a,b]内单调减少。

3.3.2 曲线凸凹性的判别法

定义3.3.1 设函数f(x)在区间I内连续。如果对任意的x_{1},x_{2}\in I\left ( x_{1}\neq x_{2} \right )

f\left ( \frac{x_{1}+x_{2}}{2} \right )< \frac{f\left ( x_{1} \right )+f\left ( x_{2} \right )}{2}

则称f(x)在I上的图形是凹的;如果对任意的x_{1},x_{2}\in I\left ( x_{1}\neq x_{2} \right )

f\left ( \frac{x_{1}+x_{2}}{2} \right )> \frac{f\left ( x_{1} \right )+f\left ( x_{2} \right )}{2}

则称f(x)在I上的图形是凸的。 

定理3.3.2 设函数f(x)在区间I内二阶导数存在,那么

(1)若在I内,f''(x)>0,则曲线f(x)在I上是凹的;

(2)若在I内,f''(x)<0,则曲线f(x)在I上是凸的。

 定理3.3.3 设曲线y=f(x),若点\left ( x_{0} ,f\left ( x_{0} \right )\right )为曲线y=f(x)的拐点,则f''\left ( x_{0} \right )=0f''\left ( x_{0} \right )不存在

3.4 函数的极值和最值

3.4.1 函数的极值及其求法

定义3.4.1 设函数f(x)在点x_{0}的某邻域U\left ( x_{0} \right )内有定义,若对任意x\in \bigcup_{}^{0}\left ( x_{0} \right )

f\left ( x \right )< f\left ( x_{0} \right )  (或f\left ( x \right )> f\left ( x_{0} \right )

则称f\left ( x_{0} \right )为函数f(x)的极大值(或极小值),点x_{0}称为函数f(x)的极大值点(极小值点)。

定理3.4.1 若函数f(x)在x_{0}点可导,且在x_{0}点处取得极值,则f'\left ( x_{0} \right )=0.

求极值的步骤:

(1)确定函数f(x)的定义域

(2)考察f'(x)在可能极值点左右的符号

(3)求出各极值点处的函数值

 3.4.2 函数的最值及其求法

定义3.4.2 设函数f(x)在区间I上有定义,x_{0}\in I.若对任意x\in I,

f\left ( x_{0} \right )\geq f\left ( x \right )(或f\left ( x_{0} \right )\leq f\left ( x \right )

则称f\left ( x_{0} \right )为函数f(x)在区间I上的最大值(或最小值),而点x_{0}称为函数f(x)在区间I上的最大值点(最小值点)。

3.5 函数作用

3.5.1 曲线的渐近线

定义3.5.1 设曲线y=f(x),它的一支沿某一方向伸展至无穷远。若曲线上的动点P沿着曲线无限地远离原点时,点P到某条直线L的距离趋于零,则称直线L为曲线y=f(x)的一条渐近线。

渐近线分水平渐近线、垂直渐近线或斜渐近线三种。

3.5.2 函数的微分法作图

(1)求出函数的定义域及不连续点,确定图形的范围及与坐标轴相交情况;

(2)讨论函数的奇偶行、周期性,确定图形的对称性和周期;

(3)讨论曲线的渐近线,确定图形伸展至无穷远处时的形态;

(4)求出使f'(x)=0与f''(x)=0的点及f'(x)与f''(x)不存在的点,列表讨论确定函数的极值、图形的升降、凸向及拐点;

(5)描出曲线上已求得的几个特殊点(与极值点相应曲线的点、拐点及曲线与坐标轴的交点),必要时再补充一些点,并按(1)、(2)、(3)、(4)已得到的信息逐段绘图。

3.6 导数在经济中的应用

3.6.1 边际分析

1.边际成本

2.边际收益

3.边际利润

3.6.2 弹性分析

1.弹性

2.需求的价格弹性和总收益

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值