McNemar检验,最常用的用法是用来检验列联表的相似性,但实际上它也可以用来检验两个相关样本是否来自同一分布。
对于用McNemar检验检验列联表,举一个简单的保险场景下的例子如下:
比如用两个数据模型来识别投保人在未来一年是否会发生损失,在两个数据模型下,有a个人无论在模型1还是模型2下始终都处于不发生损失的组,有b个人在模型1下处于不发生损失组、而在模型2下处于发生损失组;有c个人在模型1下处于发生损失组、而在模型2下处于不发生损失组,有d个人无论在模型1还是模型2下始终都处于发生损失的组。这样,列成列联表的形式如下:
模型2 | ||
模型1 | 无损失 | 有损失 |
无损失 | a | b |
有损失 | c | d |
现在,我们的问题来了,我们采用了两个数据模型,而这两个数据模型的结果,到底是不是有显著的不同呢?
想要理解这个问题,我们来说一下 McNemar 检验的原理。在上面的列联表中,a和d其实是没有用的,因为他们在两个数据模型下都处于相同的分组。因此,关键的数据是 b 和 c,我们需要重点关注这两个分组,这个数如果相差不大,那么就说明两个模型没有显著差别。
怎么理解这两个分组的差异呢?我举一个扔骰子的例子。我们手里有10个骰子,分别仍两次,第一次得到10个数,第二次也得到10个数。如果两次扔骰子是无差异的,那么第2次扔出的10个数比第1次扔出的对应的10个数 大 的个数,与第2次扔出的10个数比第1次扔出的对应的10个数 小 的个数,应该是差不多的,比如下表:
第一次 | 第二次 | 是否大于 |
3 | 4 | 大于 |
6 | 5 | 小于 |
4 | 4 | 等于 |
6 | 1 | 小于 |
3 | 1 | 小于 |
2 | 5 | 大于 |
3 | 5 | 大于 |
3 | 6 | 大于 |
4 | 4 | 等于 |
6 | 2 | 小于 |
在这个投骰子的例子中,出现4个“大于”,4个“小于”,2个“等于”。2个“等于”的价值不大,主要看“大于”数和“小于”数的比较,两者都是4个,因此说明两次投骰子的结果没有显著差异,这就是 McNemar 检验的原理。
下面,回到保险的那个场景。假设我们的数据是 a=49, b=25, c=21, d=107。怎么判断两个数据模型的结果没有显著差异呢?那就是使用 McNemar 检验。下面准备上代码,采用 Python 语言来做。
做法主要使用 Python 中的 statsmodels 模块。
首先,要说, Python 的 statsmodels 中有两个 McNemar 检验,一个在 statsmodels.stats.contingency_tables 中,另一个在 statsmodels.sandbox.stats.runs 中。我要说的是,后者是前者的扩展版,因此,我推荐使用的是后者。下面,我们用两个都做一下,而且结果是相同的,代码如下:
x=[[49,25],[21,107]]
import statsmodels.stats.contingency_tables as ct
print(ct.mcnemar(x, exact=True, correction=False))
import statsmodels.sandbox.stats.runs as rns
print(rns.mcnemar(x, y=None, exact=True, correction=False))
代码运行后的结果,两个模块的结果均为:统计量值为21,p值为 0.6587。p值很大,说明两个数据模型的分析结果没有显著差异。(注意,McNemar检验的原假设是:两个数据模型结果相同)
用 McNemar 检验列联表的相似性,就说到这里。关于用 McNemar 检验两个样本的相似性,另起一个文章再说。