深度学习基本模块

深度学习基本模块

Optimization

SGD

公式

while True:
    dx = compute_gradient(x)
    x -= learning_rate * dx

SGD+Momentum

公式:

vx = 0
while True:
    dx = compute_gradient(x)
    vx = rho*vx+dx
    x -= learning_rate * vx

AdaGrad

AdaGrad就是在sgd的基础上除以一个项,使得在梯度变化快的地方减慢速度,在梯度变化慢的地方加快速度。但是随着梯度累加,速度会越来越慢,因此RMSProp被提出

grad_squared = 0
while True:
    dx = compute_gradient(x)
    grad_squared += dx*dx
    x -= learning_rate * dx / (np.sqrt(grad_squared) + 1e-7)

RMSProp

grad_squared = 0
while True:
    dx = compute_gradient(x)
    grad_squared = decay_rate * grad_squared + (1 - decay_rate)*dx*dx
    x -= learning_rate * dx/(np.sqrt(grad_squared)+1e-7)

Adam:Momentum+RMSProp

first_moment = 0
second_moment = 0
while True:
    dx = compute_gradient(x)
    first_moment = beta1 * first_moment + (1-beta1)*dx
    second_moment = beta2 * second_moment + (1-beta2)*dx*dx
    x -= learning_rate*first_moment /(np.sqrt(second_moment)+1e-7)

Batchnorm

在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值