如何在Spring Boot中无缝集成LangChain4j,玩转AI大模型!

0 前言

LangChain4j 提供了用于以下功能的 Spring Boot 启动器

1 常用集成的 Spring Boot starters

Spring Boot 启动器帮助通过属性创建和配置 语言模型嵌入模型嵌入存储 和其他核心 LangChain4j 组件。

要使用 Spring Boot 启动器,请导入相应依赖包。

Spring Boot 启动器依赖包的命名规范:langchain4j-{integration-name}-spring-boot-starter

如对于 OpenAI(langchain4j-open-ai),依赖包名称为 langchain4j-open-ai-spring-boot-starter

代码语言:xml

<dependency>
    <groupId>dev.langchain4j</groupId>
    <artifactId>langchain4j-open-ai-spring-boot-starter</artifactId>
    <version>0.34.0</version>
</dependency>

然后,可在 application.properties 文件中配置模型参数:

代码语言:java

langchain4j.open-ai.chat-model.api-key=${OPENAI_API_KEY}
langchain4j.open-ai.chat-model.model-name=gpt-4o
langchain4j.open-ai.chat-model.log-requests=true
langchain4j.open-ai.chat-model.log-responses=true
...

此时,将自动创建一个 OpenAiChatModel 实例(ChatLanguageModel 的实现)

并且可通过自动注入在需要的地方使用它:

代码语言:java

@RestController
public class ChatController {

    ChatLanguageModel chatLanguageModel;

    public ChatController(ChatLanguageModel chatLanguageModel) {
        this.chatLanguageModel = chatLanguageModel;
    }

    @GetMapping("/chat")
    public String model(@RequestParam(value = "message", defaultValue = "Hello") String message) {
        return chatLanguageModel.generate(message);
    }
}

如需一个 StreamingChatLanguageModel 实例,使用 streaming-chat-model 代替 chat-model 属性:

代码语言:java

langchain4j.open-ai.streaming-chat-model.api-key=${OPENAI_API_KEY}
...

2 声明式 AI 服务的 Spring Boot starter

LangChain4j 提供一个 Spring Boot starter,用于自动配置 AI 服务RAG工具 等功能。

假设已导入某已集成的starters(见上文),然后导入 langchain4j-spring-boot-starter

代码语言:xml

<dependency>
    <groupId>dev.langchain4j</groupId>
    <artifactId>langchain4j-spring-boot-starter</artifactId>
    <version>0.34.0</version>
</dependency>

定义 AI 服务接口,并用 @AiService

代码语言:java

@AiService
interface Assistant {

    @SystemMessage("You are a polite assistant")
    String chat(String userMessage);
}

可把它看作标准 Spring Boot的 @Service,但带有 AI 功能。

当应用程序启动时,LangChain4j 启动器将扫描类路径并找到所有带有 @AiService 注解的接口。对于每个找到的 AI 服务,它将使用应用程序上下文中的所有 LangChain4j 组件创建此接口的实现,并将其注册为一个 bean,因此您可以在需要的地方进行自动注入:

代码语言:java

@RestController
class AssistantController {

    @Autowired
    Assistant assistant;

    @GetMapping("/chat")
    public String chat(String message) {
        return assistant.chat(message);
    }
}

更多细节请见 这里

3 支持的版本

LangChain4j 的 Spring Boot 集成需要 Java 17 和 Spring Boot 3.2。

4 示例

4.1 使用 Spring Boot 的客户支持代理示例

从官网拉下代码后,直接修改配置文件中的 api-key 如下(仅做本地演示用):

启动CustomerSupportAgentApplication应用后,直接在控制台交互:

我开始提问:How can I cancel my booking?

为啥 AI 会要求提供信息呢?因为注册了一个工具:

代码语言:java

@Component
public class BookingTools {

    @Autowired
    private BookingService bookingService;

    @Tool
    public void cancelBooking(String bookingNumber, String customerName, String customerSurname) {
        System.out.printf("[Tool]: Cancelling booking %s for %s %s...%n", bookingNumber, customerName, customerSurname);
        bookingService.cancelBooking(bookingNumber, customerName, customerSurname);
    }
}

那我就按他的要求提供信息:

AI 还是会问我要名字。那我就随便回答,然后就报错了:

注意这是个后端自定义的业务异常,即没有找到对应名字的预订。但请注意最后 AI 还是会提醒你输入正确信息:

那就放过他吧,我输入后端存储的真实信息:

4.2 HelloWorld

代码语言:java

import dev.langchain4j.model.chat.ChatLanguageModel;
import dev.langchain4j.model.openai.OpenAiChatModel;

import static dev.langchain4j.model.openai.OpenAiChatModelName.GPT_4_O_MINI;

public class _00_HelloWorld {

    public static void main(String[] args) {

        ChatLanguageModel model = OpenAiChatModel.builder()
                .apiKey(ApiKeys.OPENAI_API_KEY)
                .modelName(GPT_4_O_MINI)
                .build();

        String answer = model.generate("Say Hello World");

        System.out.println(answer);
    }
}

响应:

代码语言:bash

Hello, World!

如何系统的去学习大模型LLM ?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

事实上,抢你饭碗的不是AI,而是会利用AI的人。

科大讯飞、阿里、华为等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?

与其焦虑……

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。

针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

一、LLM大模型经典书籍

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

在这里插入图片描述

二、640套LLM大模型报告合集

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)

在这里插入图片描述

三、LLM大模型系列视频教程

在这里插入图片描述

四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)

在这里插入图片描述

LLM大模型学习路线

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。

  • 内容

    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。

  • 内容

    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.3 流水线工程
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。

  • 内容

    • L3.1 Agent模型框架
    • L3.2 MetaGPT
    • L3.3 ChatGLM
    • L3.4 LLAMA
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。

  • 内容

    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

这份 LLM大模型资料 包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值