0 前言
LangChain4j 提供了用于以下功能的 Spring Boot 启动器:
- 常用集成
- 声明式 AI 服务
1 常用集成的 Spring Boot starters
Spring Boot 启动器帮助通过属性创建和配置 语言模型、嵌入模型、嵌入存储 和其他核心 LangChain4j 组件。
要使用 Spring Boot 启动器,请导入相应依赖包。
Spring Boot 启动器依赖包的命名规范:langchain4j-{integration-name}-spring-boot-starter
。
如对于 OpenAI(langchain4j-open-ai
),依赖包名称为 langchain4j-open-ai-spring-boot-starter
:
代码语言:xml
<dependency>
<groupId>dev.langchain4j</groupId>
<artifactId>langchain4j-open-ai-spring-boot-starter</artifactId>
<version>0.34.0</version>
</dependency>
然后,可在 application.properties
文件中配置模型参数:
代码语言:java
langchain4j.open-ai.chat-model.api-key=${OPENAI_API_KEY}
langchain4j.open-ai.chat-model.model-name=gpt-4o
langchain4j.open-ai.chat-model.log-requests=true
langchain4j.open-ai.chat-model.log-responses=true
...
此时,将自动创建一个 OpenAiChatModel
实例(ChatLanguageModel
的实现)
并且可通过自动注入在需要的地方使用它:
代码语言:java
@RestController
public class ChatController {
ChatLanguageModel chatLanguageModel;
public ChatController(ChatLanguageModel chatLanguageModel) {
this.chatLanguageModel = chatLanguageModel;
}
@GetMapping("/chat")
public String model(@RequestParam(value = "message", defaultValue = "Hello") String message) {
return chatLanguageModel.generate(message);
}
}
如需一个 StreamingChatLanguageModel
实例,使用 streaming-chat-model
代替 chat-model
属性:
代码语言:java
langchain4j.open-ai.streaming-chat-model.api-key=${OPENAI_API_KEY}
...
2 声明式 AI 服务的 Spring Boot starter
LangChain4j 提供一个 Spring Boot starter,用于自动配置 AI 服务、RAG、工具 等功能。
假设已导入某已集成的starters(见上文),然后导入 langchain4j-spring-boot-starter
:
代码语言:xml
<dependency>
<groupId>dev.langchain4j</groupId>
<artifactId>langchain4j-spring-boot-starter</artifactId>
<version>0.34.0</version>
</dependency>
定义 AI 服务接口,并用 @AiService
:
代码语言:java
@AiService
interface Assistant {
@SystemMessage("You are a polite assistant")
String chat(String userMessage);
}
可把它看作标准 Spring Boot的 @Service
,但带有 AI 功能。
当应用程序启动时,LangChain4j 启动器将扫描类路径并找到所有带有 @AiService
注解的接口。对于每个找到的 AI 服务,它将使用应用程序上下文中的所有 LangChain4j 组件创建此接口的实现,并将其注册为一个 bean,因此您可以在需要的地方进行自动注入:
代码语言:java
@RestController
class AssistantController {
@Autowired
Assistant assistant;
@GetMapping("/chat")
public String chat(String message) {
return assistant.chat(message);
}
}
更多细节请见 这里。
3 支持的版本
LangChain4j 的 Spring Boot 集成需要 Java 17 和 Spring Boot 3.2。
4 示例
4.1 使用 Spring Boot 的客户支持代理示例
从官网拉下代码后,直接修改配置文件中的 api-key 如下(仅做本地演示用):
启动CustomerSupportAgentApplication应用后,直接在控制台交互:
我开始提问:How can I cancel my booking?
为啥 AI 会要求提供信息呢?因为注册了一个工具:
代码语言:java
@Component
public class BookingTools {
@Autowired
private BookingService bookingService;
@Tool
public void cancelBooking(String bookingNumber, String customerName, String customerSurname) {
System.out.printf("[Tool]: Cancelling booking %s for %s %s...%n", bookingNumber, customerName, customerSurname);
bookingService.cancelBooking(bookingNumber, customerName, customerSurname);
}
}
那我就按他的要求提供信息:
AI 还是会问我要名字。那我就随便回答,然后就报错了:
注意这是个后端自定义的业务异常,即没有找到对应名字的预订。但请注意最后 AI 还是会提醒你输入正确信息:
那就放过他吧,我输入后端存储的真实信息:
4.2 HelloWorld
代码语言:java
import dev.langchain4j.model.chat.ChatLanguageModel;
import dev.langchain4j.model.openai.OpenAiChatModel;
import static dev.langchain4j.model.openai.OpenAiChatModelName.GPT_4_O_MINI;
public class _00_HelloWorld {
public static void main(String[] args) {
ChatLanguageModel model = OpenAiChatModel.builder()
.apiKey(ApiKeys.OPENAI_API_KEY)
.modelName(GPT_4_O_MINI)
.build();
String answer = model.generate("Say Hello World");
System.out.println(answer);
}
}
响应:
代码语言:bash
Hello, World!
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓