在当今数字化时代,人工智能(AI)技术正以前所未有的速度和规模改变着各行各业,医疗健康领域更是其中的焦点之一。随着大数据的积累、计算能力的提升以及算法技术的不断进步,医疗健康大模型应运而生,成为推动医疗行业创新发展的关键力量。这些大模型不仅在疾病预测、个性化治疗和健康管理等方面展现出巨大潜力,还在提升医疗服务质量和效率方面发挥着重要作用。
本文将深入探讨医疗健康大模型的发展现状及其未来展望,分析其底层逻辑、核心组件、整体架构、高性能算力要求、高质量数据需求、关键算法以及多个跨界融合的应用场景,旨在为医疗健康领域的从业者、研究者和政策制定者提供全面而深入的洞见。
一、AI+应用的底层逻辑
AI应用底层架构是指支撑AI系统运行的基础技术框架,包括硬件、软件和数据等多个层面。它为AI模型的训练、推理和应用提供了必要的计算资源、算法支持和数据处理能力。
核心组件
数据层:
数据是AI的基础,涉及数据的收集、存储和处理。数据层的安全性和可靠性对于AI系统的性能和应用至关重要。
算法层:
算法层涉及机器学习和深度学习等技术,包括特征提取、模型选择和参数优化等过程。算法层的设计和优化对AI系统的性能和效果有重要影响。
模型层:
模型层是AI系统的核心,包含各种经过训练的机器学习或深度学习模型。这些模型可以用于实现具体的AI任务,如图像识别、自然语言处理等。
应用层:
应用层面向客户,允许AI系统完成任务、生成信息或做出数据驱动的决策,实现最终用户与AI系统的交互。
硬件层:
硬件层包括GPU、CPU、ASIC(专用集成电路)和FPGA(现场可编程门阵列)等硬件设备。这些硬件设备为AI模型的训练和推理提供了必要的计算资源。
软件层:
软件层包括编程开发、编译优化和硬件使能等子层。编程开发层为开发者提供构建AI模型的API接口;编译优化层负责AI模型的编译优化并调度硬件资源完成计算;硬件使能层是AI框架与算力硬件对接的通道。
基础设施层:
基础设施层提供算力支持,包括智能计算集群、异构智能计算服务器和人工智能计算中心等。
工具和服务层:
工具和服务层包括智能模型敏捷开发工具、数据基础服务与治理平台等,为AI应用开发提供支持。
二、医药健康大模型整体构架
1个基础平台:高性能超算中心,它是支撑医疗健康大模型运行的基石。
3类服务对象:医护、患者、管理者。
4大数据中心:生物信息数据中心、医学影像数据中心、组织病理数据中心、临床信息数据中心。
5个高精尖算法模型:自然语言大模型、计算机视觉大模型、多模态融合大模型、强化学习大模型、图神经网络大模型。
N个跨界融合应用:包括智能导医导诊、智能影像分析、辅助诊疗决策、智能医学宣教、智能药物研发、智能手术辅助、智能健康管理、智慧医院管理等。
图片来源:浙江大学附属第四人民医院
三、高性能算力要求
1.超快速度的算力资源
定义与重要性:超快速度的算力资源指的是具备极高计算速度和强大处理能力的计算资源,如高性能处理器(CPU)、图形处理器(GPU)、现场可编程逻辑门阵列(FPGA)、专用集成电路(ASIC)等。这些资源能够执行复杂的计算任务,并在极短的时间内完成大量数据的处理和分析,是支撑大模型高效运行和训练的基础保障。
具体要求:
高性能、国产化的服务器:支持弹性云服务和裸金属服务,并支持主流AI框架,实现中心训练和边缘推理。服务器选型需遵循国产化技术路线,确保供应链稳定,并配备丰富的软件生态,以满足日常主流业务需要。
计算资源池:支持服务器池化,构建大规模计算资源池,为影像质控等业务提供灵活、高可用的云计算资源池。用户可即时获取弹性云服务器、裸金属服务器、镜像及弹性伸缩等计算相关资源,并支持按需扩展或缩减资源,实现高效动态管理。
算力系统化设计和弹性扩展:根据业务需求进行算力系统化设计和弹性扩展,通过AI算力集群、训练服务器等方式满足不同层级模型的训练和推理需求。对于中心型大模型,应建立AI算力集群,支持百亿甚至千亿大模型的训练和推理;对于区域级大模型,构建包含AI算力集群、训练服务器、推理服务器以及训推一体机在内的训练中心和推理中心;对于边端侧的应用场景,部署不同规格的推理服务器、推理模块以及终端内嵌的推理算力。
2.海量吞吐的存储资源
定义与重要性:海量吞吐的存储资源是指能够高效处理并存储大量数据的存储系统或设备。高性能、可扩展、高可靠性的数据存储技术,可以满足大模型训练和推理过程中对数据存储的高要求。
具体要求:
全内存、智能分布式存储技术:确保在大模型训练和推理过程中提供高效、可靠的数据存储服务。这些技术能够实现横向扩展和弹性伸缩,以适应数据量的快速增长和业务需求的变化。
高速读写能力和低延迟性能:全闪存存储和智能分布式存储系统具备高速读写能力和低延迟性能,这在大模型数据训练过程中尤为重要,因为它能够减少数据处理的瓶颈,提高整体系统的响应速度。
多协议互通和端到端校验:存储系统应支持多协议互通和端到端校验,以保障数据的安全性和完整性。多协议互通意味着存储系统能够无缝集成各种人工智能服务器、网络节点以及AI平台软件,实现数据的无损互通和零迁移零拷贝;端到端校验则进一步确保了数据的完整性和可靠性,避免了数据在传输和存储过程中的丢失或损坏。
3.畅通无阻的网络资源
定义与重要性:畅通无阻的网络资源通常是指一种网络环境或资源集合,具备高速的网络连接、稳定的网络服务、安全的数据传输、灵活的网络架构等特征。它们能够确保数据、信息或应用在网络中的传输和访问过程中不受阻碍、延迟小、稳定性高,并且具有足够的带宽和安全保障,能够为大模型提供稳定、高效、安全的数据传输环境。
具体要求:
智能联接综合系统:采用5G、F5G、HCE、IPv6+、Roce等多种网络技术,以满足大模型中智能终端与数据中心、数据中心之间、数据中心内部等多种有线及无线高速、低延迟的联接需求,支持即插即用、SDN、VxLAN等功能,实现网络的高带宽和高可靠性。
有线网络联接:支持即插即用、SDN控制器注册、AP设备管理等功能,具备2.5G或10G端口以及PoE++供电能力,同时强调安全性,支持多种认证方式和策略联动。核心交换机则需强调高容量、高可靠性及扩展性,集成无线局域网控制器功能。
无线网络联接:符合WLAN标准;支持智能漫游、多频多模、高速上联等特性,并具备物联网接入扩展能力。WLAN终端和AP设备支持IEEE802.11系列标准,实现双射频+独立射频扫描模式,AI智能漫游,以及2.5G或10G上联有线接口。支持智能关线和物联网模块,以及分布式AP部署和软件切换射频模式,提供基于真实业务流的网络故障检测和应用识别能力。
4.自主可控的国产信创
定义与重要性:自主可控的国产信创是指在基础平台建设中,通过自主研发和创新,摆脱对国外技术的依赖,实现信息技术产品和服务的自主可控。在设计医疗健康行业的大模型基础设施时,坚持“自主可控”原则至关重要,它是保障医疗健康大模型运行安全性的基础。
具体要求:
优先选择国产软硬件产品:在平台构建中要优先选择具有自主知识产权、安全性和可控性的国产软硬件产品,以构建一个综合性的安全平台服务能力。通过致力于整合国内优秀的技术资源,减少对外部技术的依赖,确保技术发展的自主性和安全性。
注重产品的先进性和高性能:更加注重产品的先进性和高性能,以支持国内技术的发展和创新。同时,充分考虑软硬件产品的可扩展性和连续性,使之能够适应不断增长的业务需求和技术进步。通过构建具有韧性的未来供应连续性能力,即使在供应链受到冲击的情况下,也能保障医疗服务的稳定性和持续性。
图片来源:浙江大学附属第四人民医院
四、高质量算料/语料
生物信息数据中心:存储基因信息库、蛋白质信息库等海量生物数据,利用大模型技术进行多组学数据整合分析,为医学研究提供深度洞察力。
医学影像数据中心:汇集DR、CT、MR等多元影像数据,实现影像信息的统一管理、高效存储和便捷访问,结合人工智能技术提供智能化支持。
组织病理数据中心:收集、存储和管理病理数据,通过高质量的数据处理和分析,推动临床诊断的准确性和医学研究的发展。
临床信息数据中心:以患者为中心,整合患者临床数据,提供标准化、结构化的数据存储和分析,支持临床决策和医疗服务质量提升。
医学数据治理模式:强调数据治理的重要性,包括数据梳理、数据串联、数据清洗和数据标准化等步骤,确保数据的完整性、一致性和安全性,为医疗健康大模型的构建和应用提供坚实基础。
图片来源:浙江大学附属第四人民医院
五、算法
自然语言大模型:通过深度学习技术,如循环神经网络(RNN)、长短时记忆网络(LSTM)和转换器(Transformer),在海量文本资料上进行训练,掌握自然语言的统计模式和深层语义。这些模型提升了计算机对人类语言的理解与生成能力,为医疗健康大模型提供了语言处理能力,帮助解析和理解医疗文本,改进医患沟通,如生成易于理解的医疗解释或建议。
计算机视觉大模型:利用深度学习技术,特别是卷积神经网络(CNNs)和Transformer架构,训练出具有数十亿甚至数千亿参数规模的视觉识别模型。这些模型能够识别图像中的物体类别和人脸表情等,用于医疗影像分析和手术辅助,帮助医生更快速地发现病灶、标记异常区域,并辅助诊断各种疾病。
多模态融合大模型:能够同时处理多种数据类型的人工智能模型,如文本、图像、语音等。这类模型整合和理解不同类型的信息,适用于需要多维数据分析和预测的任务,提供更全面、更准确的结果。在医疗健康领域,多模态融合大模型有广泛的应用,如结合多种医学影像数据进行分析,帮助医生更准确地诊断疾病。
强化学习大模型:通过与外部环境的交互来学习策略,代理采取行动后环境反馈奖励信号,代理以最大化累积奖励为目标。强化学习在医疗领域展现了巨大潜力,特别是在个性化治疗、药物研发和手术辅助方面。
神经网络大模型:专为处理结构化数据(如图和网络)设计的人工智能模型,能够学习节点之间的关系,并利用这些关系进行预测或分类。在药物研发、医疗网络数据处理等领域展现出强大的应用潜力。
六、大语言模型应用子场景
图片来源:浙江大学附属第四人民医院
智能导医导诊:通过分析患者的病史和健康数据,提供精准的导医导诊服务,优化就诊流程,减少等待时间。
病历文书质控:利用大模型高效整合和分析医疗数据,确保病历文书的完整性和准确性,提升病历质控效率。
智能影像分析:结合人工智能技术和高质量标注数据,提高医学影像的诊断准确性和效率,减少误诊和漏诊。
智能搜索问答:通过深度学习医学知识图谱和文献,提供专业的医疗信息检索和问答服务,支持医生的诊疗决策。
辅助诊疗决策:分析患者的症状、影像、实验室结果等,提供精准的诊断和治疗建议,提升诊疗效率和质量。
智能医学宣教:根据用户个性化信息,生成定制化的健康宣教内容,提升健康知识的传播效果。
智能药物研发:加速药物研发进程,提高研发效率,推动个性化医疗的发展。
智能手术辅助:提供手术规划、导航和实时监测,提高手术的精确性和安全性。
智能健康管理:通过分析个人健康数据,提供个性化的健康评估和建议,促进健康管理的个性化和精准化。
智慧医院管理:优化医院资源管理、运营效率和患者流量管理,提升医院管理的效率和质量。
综上所述,医疗健康大模型作为人工智能技术在医疗领域的重要应用,正引领着医疗行业的深刻变革。从底层逻辑到核心组件,从整体架构到高性能算力要求,从高质量数据需求到关键算法,再到多个跨界融合的应用场景,医疗健康大模型展现出巨大的发展潜力和广阔的应用前景。然而,这一领域的快速发展也带来了诸多挑战,如数据隐私保护、模型的可解释性、技术标准的制定等。未来,我们需要在技术创新的同时,加强政策引导和监管,确保医疗健康大模型的安全、可靠和可持续发展。通过不断的努力,医疗健康大模型将为实现更加智能化、高效化和个性化的医疗服务,为推动“健康中国2030”目标的实现,贡献更多的智慧和力量。
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!
在这个版本当中:
第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言
您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
五、AI产品经理大模型教程
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓