随着ChatGPT的爆火,推动了新一轮的AI技术进步。但大模型自身存在幻觉、知识更新难等问题,阻碍了其直接进行落地应用。RAG(Retrieval-Augmented Generation)技术将LLM与文本信息检索相结合,解决了在一些场景下模型知识不足的问题。RAG的大致流程如下图所示,将候选文本向量化后当作索引存入向量数据库。用户提出问题后,也将问题向量化,并从数据库中召回和问题相关的候选文本,一并加入到LLM的上下文中,进行回答。使用RAG技术能帮助工程师们在实际应用场景下将LLM快速落地。
RAG大致流程,图片来自:https://www.promptingguide.ai/research/rag
本书开始写作于2023年11月,当时在一家大厂做LLM应用相关工作已经有一段时间了,我们算做RAG比较早的部门,记得23年5月份开始就接触RAG了(leader岁数比较大,不过还是挺能接受新技术的)。最开始这套东西被叫做RAG还不是特别广泛,我在23年6月写了一篇知乎文章,还叫《大模型外挂(向量)知识库》。当时网上还没有特别多的相关资料,看的都是SentenceTransformers官方文档。大概23年10月份左右,认识了本书的另外一位作者,一拍即合,想把一些RAG比较零碎的东西整合起来,比较系统的写一本书。
写书是个比较慢的过程,工作之余,断断续续,大概用了4个月,主要内容便写完了。然后就是校稿、修改,封面设计等,直到24年9月份《大模型RAG实战:大模型RAG实战:RAG原理、应用与系统构建》才正式出版。感觉我们的进度不是很快,没想到还是能占到“第一本RAG书籍”的坑。
LLM相关技术近两年发展速度大家也有目共睹,学不完,根本学不完。因此本书不免会有一些新技术没有涵盖,我们也维护了一个github仓库,书的代码以及一些新的RAG技术也会更新到这个仓库里:
https://github.com/Nipi64310/RAG-Book
接下来,介绍一些本书所涵盖的大致内容,方便读者判断是否适合购买这本书,本书一共有8章。
第一章:介绍了RAG的发展,和LLM微调的对比,优缺点、以及RAG解决了LLM直接落地时候的哪些难点。
第二章:介绍了Transformer相关的基本原理,包括embedding、编码器、解码器等。
第三章:介绍了RAG环节里比较核心的文本向量化模型。首先介绍了和文本向量化模型比较相关的基础概念,比如对齐性、均匀性、句向量表示方法、对称检索非对称检索等。然后介绍了一些稠密向量检索模型,包括SimCSE、SBERT、CoSENT、WhiteBERT、SGPT等。注意,本章并没有特别介绍排行榜上的各种模型(如bge等),榜上的大部分模型(在写作本书的时间点上)基本都是按照SimCSE的方式训练的,本章更侧重介绍不同的向量化模型训练范式,让读者了解更本质的文本向量表示方法。最后,也介绍了稀疏向量检索模型和重排序模型。
第四章:这一张比较琐碎,内容也比较多:
(1)LLM基础的提示词工程以及在RAG场景下的提示词技巧。
(2)文本切块方法,包含基于规则的以及基于模型的。
(3)向量数据库的基本原理以及一些开源向量数据库
(4)召回环节优化策略:短文本全局信息增强、上下文扩充、文本多向量表示、元数据召回、重排序等。
(5)召回环节的评估以及模型回答评估
(6)RAG场景下的LLM优化,包括微调FLARE、Self-RAG等。
第五章:介绍了RAG的范式演变,从基础的RAG系统开始到agent再到多模态RAG
第六章:介绍了RAG系统相关的训练内容。除了文本向量化模型和LLM可以独立训练外,还可以将二者联合起来,进行序贯训练以及联合训练。
第七章:介绍了如何基于langchain构建一个简单的RAG系统。包括langchain基础模块介绍,以及构建一个ChatPDF可视化应用。
第八章:本章从实战角度出发,讲解了向量化模型和LLM的选型、训练数据构造、训练方法等。
希望本书能能助您快速入门大模型RAG,有问题随时联系笔者,加微信、后台留言、github提issue均可。如您也有大模型相关公众号且愿意宣传本书,也可联系笔者,免费提供抽奖所用书籍。
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!
在这个版本当中:
第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言
您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
五、AI产品经理大模型教程
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓