基于主从博弈的共享储能综合能源微网优化研究,共享储能下的主从博弈理论优化共享能源微网运行研究

关键词:主从博弈;共享储能;优化运行;电热综合需求响应;电网技术复现;
主题:基于主从博弈理论的共享储能与综合能源微网优化运行研究。
提出共享储能背景下微网运营商与用户聚合商间的主从博弈模型,并证明Stackelberg 均衡解的存在性与唯一性。
最后,在 MATLAB平台上进行算例仿真,通过 Yalmip 工具与 CPLEX 求解器进行建模与求解,利用启发式算法与求解器相结合的方法优化微网运营商与用户聚合商的策略。

ID:9290670857260943

言午三木


基于主从博弈理论的共享储能与综合能源微网优化运行研究

摘要:随着能源问题日益突出,共享储能和综合能源微网等新兴技术应运而生。本文提出了一种基于主从博弈理论的共享储能与综合能源微网优化运行研究方法,并利用MATLAB平台进行了算例仿真。通过建立微网运营商与用户聚合商之间的主从博弈模型,并证明了Stackelberg均衡解的存在性与唯一性。最后,本文采用启发式算法与求解器相结合的方法,优化微网运营商与用户聚合商的策略,实现了共享储能与综合能源微网的优化运行。

关键词:主从博弈;共享储能;优化运行;电热综合需求响应;电网技术复现

  1. 引言
    能源问题已经成为全球关注的焦点,寻求可持续、高效的能源解决方案变得尤为重要。共享储能和综合能源微网作为解决方案之一,为能源领域提供了新的突破口。共享储能通过将分布式储能系统进行互联,实现能源资源的共享与利用。综合能源微网则通过将不同能源系统进行整合,实现能源互补与优化。然而,共享储能与综合能源微网的优化运行仍然面临着许多挑战。

  2. 主从博弈模型的建立
    为了解决共享储能与综合能源微网的优化运行问题,本文提出了基于主从博弈理论的方法。首先,将微网运营商和用户聚合商之间的关系建立为主从博弈模型。微网运营商作为主导者,可以通过制定策略引导用户聚合商的行为。用户聚合商作为从属者,则需要根据微网运营商的策略来做出决策。通过建立主从博弈模型,可以实现共享储能与综合能源微网的优化运行。

  3. Stackelberg均衡解的存在性与唯一性证明
    为了证明主从博弈模型存在性与唯一性,本文使用了Stackelberg均衡解的理论。首先,利用微分方程和非线性规划的方法,建立了微网运营商和用户聚合商之间的优化模型。然后,通过求解该优化模型,得到了Stackelberg均衡解,并证明了其存在性与唯一性。这些结果表明,主从博弈模型可以有效地描述共享储能与综合能源微网的优化运行问题。

  4. 算例仿真与优化策略
    为了验证主从博弈模型的有效性,本文在MATLAB平台上进行了算例仿真。利用Yalmip工具和CPLEX求解器,建立了微网运营商和用户聚合商的优化模型。通过将启发式算法与求解器相结合,实现了微网运营商和用户聚合商的策略优化。仿真结果表明,主从博弈模型能够有效优化共享储能与综合能源微网的运行效果。

  5. 结论
    本文提出了基于主从博弈理论的共享储能与综合能源微网优化运行方法,并证明了其存在性与唯一性。通过算例仿真,验证了主从博弈模型的有效性。进一步的研究可以考虑其他因素对共享储能与综合能源微网的影响,以及进一步提高模型的精确性和求解效率。

参考文献:
[1] Li, X., Luh, P. B., & Zhang, Y. (2016). Optimal Energy Management for Grid-Connected Microgrids Considering Energy Sharing.
[2] Li, D., Wen, J., & Ouyang, Z. (2017). Game-theoretic energy management for community-based microgrids.
[3] Hu, Z., Duan, S., & Zhang, M. (2018). Quantitative Analysis of Energy Sharing Benefits in Microgrid: A Stackelberg Game Approach.

相关的代码,程序地址如下:http://wekup.cn/670857260943.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值