SYNAPSE: TRAJECTORY-AS-EXEMPLAR PROMPTING WITH MEMORY FOR COMPUTER CONTROL(轨迹作为示例+记忆的计算机控制)
-
总结:
-
构建了一个名为synapse的计算机控制智能体,其能力:
- 状态抽象:从原始状态中过滤掉与任务无关的信息,允许在有限的上下文中提供更多示例
- 轨迹作为示例提示:用具有抽象状态和动作的完整轨迹提示LLM,以改善多步骤决策
- 示例记忆,:它存储示例的嵌入,并通过相似性搜索检索它们,以便泛化到新任务
-
解决了当前计算机控制智能体的三个挑战:
-
上下文长度有限:例如网页内容token量很大(采用状态抽象解决)
-
为探索的示例结构:现有计算机控制智能体难以应对长期任务(采用任务轨迹+示例轨迹记忆指导LLM生成解决)
-
特定任务的示例:现有计算机控制智能体泛化性差,仅关注单一任务(相似示例记忆指导LLM生成解决)
传统问题 SYNAPSE解决方式 1 上下文长度有限 状态抽象清洗计算机原始信息 2 难以应对长期任务 采用任务轨迹+示例轨迹记忆指导LLM生成新的轨迹 3 计算机控制智能体泛化性差 相似示例记忆指导LLM生成新的轨迹
-
-
轨迹:一系列抽象的状态+动作
-
-
框架组成:
-
state abstraction(状态抽象):通过LLM对原始计算机状态信息中任务无关项进行清洗,图中所示清洗任务(订票)无关的html源码。减少了每个状态所需的Token数量
-
示例轨迹提示LLM:LLM被提示当前任务历史轨迹+示例轨迹(来自示例轨迹检索)
-
示例轨迹检索:具有示例轨迹记忆机制,采用相似性检索,为LLM提供相似的示例轨迹
-
-
计算机控制智能体方法流程对比
- RCI: 操作在一开始定制完成,可能错误地预测下一个操作,难以解决长期任务
- MindAct: MCQ格式的示例提示LLM,
- Trajectory-as-Exemplar: 提供了一致的交互式格式,信息量更大