使用numpy.fft对图像进行傅里叶变换

本文介绍了numpy.fft库在Python中进行图像处理的方法,包括fft2函数的基本用法、傅里叶变换图像的解读、fftshift和ifftshift的使用,以及如何实现低通和高通滤波以及去除图像中的水平和竖直线条。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

numpy.fft——numpy中的离散傅里叶变换模块

这篇博客将简要介绍numpy.fft中对图像进行处理的函数以及简单的滤波方法

1.numpy.fft.fft2

这个函数用于计算二维的离散傅里叶变换。

fft.fft2(a,s=None,axes=(-2,-1),norm=None)

从函数定义中可以看出,fft2接收4个参数:

a: 要进行傅里叶变换的数据,需要是一个数组,可以是复数形式的;

s:int型的序列(list,tuple都可以),描述输出的大小,即输出的分辨率。非必填参数。s中的各个元素用于设置输出在各个维度上的长度,即每个维度上的像素个数,s[0]代表第一个轴,s[1]代表第二个轴,以此类推。 如果设定的大小小于输入大小,则将输入裁剪成设定大小;如果设定大小大于输入大小,则将输入用0填充成设定大小。

axes:指定要在哪两个维度上进行傅里叶变换。可选参数,默认是最后两个维度。

norm: 归一化的方式,可选'backward','ortho','forward',默认是backward。

例:

import numpy as np
from PIL import Image
from matplotlib import pyplot as plt

root = r'lena.png'
img = Image.open(root).convert('L')    #转成灰度图像
fft = np.fft.fft2(img,axes=(0,1))    # 进行傅里叶变换,axes不需要自定义
plt.subplot(121),plt.imshow(img,cmap='gray')    # 显示原图
plt.subplot(122)
plt.imshow(np.log(np.abs(fft)),cmap='gray') # 显示傅里叶变换的结果
                                            # 因为傅里叶变换的结果是复数,所以取模;
                                            # 傅里叶变换后的值过大,所以取对数以便判读
plt.show()

显示结果: 

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值