numpy.fft——numpy中的离散傅里叶变换模块
这篇博客将简要介绍numpy.fft中对图像进行处理的函数以及简单的滤波方法
1.numpy.fft.fft2
这个函数用于计算二维的离散傅里叶变换。
fft.fft2(a,s=None,axes=(-2,-1),norm=None)
从函数定义中可以看出,fft2接收4个参数:
a: 要进行傅里叶变换的数据,需要是一个数组,可以是复数形式的;
s:int型的序列(list,tuple都可以),描述输出的大小,即输出的分辨率。非必填参数。s中的各个元素用于设置输出在各个维度上的长度,即每个维度上的像素个数,s[0]代表第一个轴,s[1]代表第二个轴,以此类推。 如果设定的大小小于输入大小,则将输入裁剪成设定大小;如果设定大小大于输入大小,则将输入用0填充成设定大小。
axes:指定要在哪两个维度上进行傅里叶变换。可选参数,默认是最后两个维度。
norm: 归一化的方式,可选'backward','ortho','forward',默认是backward。
例:
import numpy as np
from PIL import Image
from matplotlib import pyplot as plt
root = r'lena.png'
img = Image.open(root).convert('L') #转成灰度图像
fft = np.fft.fft2(img,axes=(0,1)) # 进行傅里叶变换,axes不需要自定义
plt.subplot(121),plt.imshow(img,cmap='gray') # 显示原图
plt.subplot(122)
plt.imshow(np.log(np.abs(fft)),cmap='gray') # 显示傅里叶变换的结果
# 因为傅里叶变换的结果是复数,所以取模;
# 傅里叶变换后的值过大,所以取对数以便判读
plt.show()
显示结果: