傅里叶分析中几个容易混淆的概念(转帖)

转自 http://blog.ednchina.com/yrwusignal/288071/message.aspx

http://blog.csdn.net/dznlong/archive/2008/04/08/2261150.aspx

 

傅里叶分析可以说是信号处理最重要的基石之一。但傅里叶级数、傅里叶变换、离散时间傅里叶变换、离散傅里叶变换等几个有点像又有点不像的概念,不仅经常搞得初学者晕头转向,有时候让老手也有点糊涂。

根据原信号的不同类型,我们可以把傅立叶变换分为四种类别:


1
非周期性连续信号
傅立叶变换(Fourier Transform)
2
周期性连续信号
傅立叶级数(Fourier Series)
3
非周期性离散信号
离散时域傅立叶变换(Discrete Time Fourier Transform)
4
周期性离散信号
离散傅立叶变换(Discrete Fourier Transform)

 

下图是四种原信号图例: 


1、  傅里叶级数 -- 周期连续信号的傅里叶分析

在高等数学中就已经知道,在满足一定的条件下,任何一个周期信号都可以分解为正弦信号的叠加。在高等数学中,这种分解就叫傅里叶级数。在信号处理学习的最初阶段,也是从这个概念出发,开始输入到信号处理的傅里叶世界。在信号处理中,周期连续信号的傅里叶分析称为傅里叶级数。此时,在傅里叶分析之前,信号是周期,连续的,在之后,结果是离散的。

定义 上以 为周期的函数,且 上绝对可积,称形如

的函数项级数为 Fourier级数三角级数 ( 的 Fourier展开式),其中

记为

 

为周期的函数的Fourier级数

是以 为周期的函数,令

                      

可以把 变换成以 为周期的t 的函数 。若 一可积,则

上可积,且 的Fourier级数展开式是

                       (1)

其中              (2)

因为 ,所以 ,于是由(1)(2)分别得

                (3)

                  (4)

这里(4)式是以 为周期的函数 的Fourier系数,(3)式是 的Fourier级数。

2、  傅里叶变换 -- 非周期连续信号的傅里叶分析

对于连续信号,如果信号不是周期的,其傅里叶分析结果又是如何呢?非周期信号可以等效为周期为无穷大的周期信号。于是,由傅里叶级数出发,利用极限的有关概念,可以推导出非周期信号的傅里叶分析结果,这就是傅里叶变换。再啰嗦一句,非周期连续信号的傅里叶分析称为傅里叶变换。在傅里叶分析之前,信号是非周期的,连续的,在之后,结果也是连续的。

对于非周期信号

前者是由信号的时间函数变换成频率函数,称为傅里叶正变换式,有时记为

  或

后者是由信号的频率函数变换为时间函数,称为傅里叶反变换式。有时记为

 或

如果上述变换中的自变量不用角频率 而用频率 ,则由于 ,可写为

频谱密度函数 是一复变函数,可以写为

式中 分别为 的模和相位, 分别为 的实部和虚部。

傅里叶反变换式也可写成

可见一个非周期信号 也可以分解成许多不同频率的正、余弦分量,也可以分解为t 的复变函数。若 是实函数,则 分别是ω的偶函数和奇函数,并且

3、  离散时间傅里叶变换 -- 非周期离散信号的傅里叶分析

傅里叶级数和傅里叶变换都是针对连续信号而言的,那么对于数字信号而言,是否有对应的傅里叶分析呢?答案是肯定的,这就是离散时间傅里叶变换( DTFT )和离散傅里叶变换( DFT )。

       对非周期离散信号的傅里叶分析称为离散时间傅里叶变换。在傅里叶分析之前,信号是非周期的,离散的,在之后,结果是连续的。

记连续时间信号f (t ) 的采样为f_{sp}(t)=/sum_{n=-/infty}^{/infty}f(nT)/delta(t-nT) , 其傅里叶变换

/mathfrak{F}/{f_{sp}(t)/} = 
/int_{-/infty}^{/infty} /hat{f}(t) e^{-i/omega t} / dt
= /int_{-/infty}^{/infty} /sum_{n=-/infty}^{/infty} f(nT)/delta(t-nT) 
e^{-i/omega t} / dt

这就是采样序列f (n T ) 的DTFT:

F_{DTFT}(e^{i /omega T}) = 
/sum_{n=-/infty}^{/infty} f(nT) /, e^{-in/omega T}

为方便起见,通常将采样间隔T归一化,则有

F_{DTFT}(e^{i /omega}) = 
/sum_{n=-/infty}^{/infty} f(n) /,e^{-in/omega}

上式即为f (n )离散时间傅里叶变换 。 它的反变换 为:

f(n) =/frac{1}{2 /pi}/int_{-/pi}^{/pi} 
F_{DTFT}(e^{i /omega})/,e^{i n /omega} /, d /omega

考虑到DTFT的周期性(参见频 谱周期性 ),它的逆变换实际上是以周期的连续函数作为输入,离散的谱作为输出,这正是傅里叶级数 的形式。

4、  离散傅里叶变换 -- 周期离散信号的傅里叶分析

对周期离散信号的傅里叶分析称为离散傅里叶变换。在傅里叶分析之前,信号是周期的,离散的,在之后,结果是离散的。如果按照前面三种分析的命名,离散傅里叶变换叫离散傅里叶级数似乎更为妥当。但由于历史的原因,大家习惯把这种傅里叶分析称为离散傅里叶变换。当然,关于 DFT 是否隐含着信号周期性的问题,也有一些争论。有的认为进行 DFT 分析就意味着默认离散信号是周期的,有的则认为离散信号不一定要看成是周期的。此处采取默认离散信号周期性的说法,主要是基于如下理由:如果把 DFT 看做是对 DTFT 结果在频域的采样的话,那么根据信号系统的有关理论可知,频域的采样等效于时域的周期延拓,这样,离散信号自然变成周期的了。在实际分析中,将 DFT 看做是对 DTFT 结果在频域的采样是合乎情理的。

下面给出离散傅里叶变换的变换对:

对于 N 点序列 /left/{x[n]/right/}_{0/le n 
<N} , 它的离散傅里叶变换(DFT)为
/hat{x}[k]=/sum_{n=0}^{N-1} 
e^{-i/frac{2/pi}{N}nk}x[n] /qquad k = 0,1,/ldots,N-1.
其中 e 自然对数底数i 虚数单位 。通常以符号 /mathcal{F} 表 示这一变换,即
/hat{x}=/mathcal{F}x
离散傅里叶变换的逆变换(IDFT)为:
x/left[n/right]={1 /over N}/sum_{k=0}^{N-1} 
e^{ i/frac{2/pi}{N}nk}/hat{x}[k] /qquad n = 0,1,/ldots,N-1.
可以记为:
x=/mathcal{F}^{-1}/hat{x}
实际上,DFT和IDFT变换式中和式前面的归一化系数并不重要。在上面的定义中,DFT和IDFT前的系数分别为 11/N 。 有时会将这两个系数都改成 1//sqrt{N}

 

这上面的四个与傅里叶分析有关的概念,最重要的是 DFT 。因为前面三种分析都需要假定信号的时域及频域都是无限长的。从概念上讲,虽然 DFT 也需要时域频域无限长,但由于时域频域都是周期的,因此只需要一个周期的信息即可。另外,由于计算机等数字设备只能 处理数字信号,也即是要求无论是时域还是频域,都要是离散的。因此, DFT 在实践中占有最重要的地位。傅里叶级数,傅里叶变换,离散时间傅里叶变换 这三个概念则更多的用于理论分析中。

 

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值