【数理方程】傅里叶级数


信号与系统笔记


前言与注意点

直 流 分 量 ≠ 基 波   谱 线 间 隔 : 不 含 直 流 : 1 T 含 直 流 : 2 T = 带 宽   幅 度 谱 就 是 c n 或 d n 的 谱 相 位 谱 就 是 φ n 或 θ n 的 谱 直流分量\ne 基波\\\ \\ 谱线间隔:不含直流:\frac 1 T\\ 含直流:\frac 2 T=带宽\\\ \\ 幅度谱就是c_n或d_n的谱\\ 相位谱就是\varphi_n或\theta_n的谱 = 线T1T2= cndnφnθn
在这里插入图片描述

一、常用公式

f ( t ) = a 0 + ∑ n = 1 [ a n cos ⁡ ( n ω 1 t ) + b n sin ⁡ ( n ω 1 t ) ]   直 流 分 量 : a 0 = 1 T 1 ∫ t 0 t 0 + T 1 f ( t ) d t   余 弦 分 量 幅 度 : a n = 2 T 1 ∫ t 0 t 0 + T 1 f ( t ) cos ⁡ ( n ω 1 t ) d t   正 弦 分 量 幅 度 : b n = 2 T 1 ∫ t 0 t 0 + T 1 f ( t ) sin ⁡ ( n ω 1 t ) d t   n = 1 , 2 , 3 , ⋯   满 足 D i r i c h l e t 条 件 f(t)=a_0+\sum_{n=1}[a_n\cos(n\omega_1t)+b_n\sin(n\omega_1t)]\\\ \\ 直流分量:a_0=\frac 1 {T_1}\int_{t_0}^{t_0+T_1}f(t)dt\\\ \\ 余弦分量幅度:a_n=\frac 2 {T_1}\int_{t_0}^{t_0+T_1}f(t)\cos(n\omega_1t)dt\\\ \\ 正弦分量幅度:b_n=\frac 2 {T_1}\int_{t_0}^{t_0+T_1}f(t)\sin(n\omega_1t)dt\\\ \\ n=1,2,3,\cdots\\\ \\ 满足Dirichlet条件 f(t)=a0+n=1[ancos(nω1t)+bnsin(nω1t)] a0=T11t0t0+T1f(t)dt an=T12t0t0+T1f(t)cos(nω1t)dt bn=T12t0t0+T1f(t)sin(nω1t)dt n=1,2,3, Dirichlet


余 弦 形 式 : f ( t ) = c 0 + ∑ n = 1 ∞ c n cos ⁡ ( n ω 1 t + φ n )   正 弦 形 式 : f ( t ) = d 0 + ∑ n = 1 ∞ d n sin ⁡ ( n ω 1 t + θ n )   a 0 = c 0 = d 0 c n = d n = a n 2 + b n 2 a n = c n cos ⁡ φ n = d n sin ⁡ θ n b n = − c n sin ⁡ φ n = d n cos ⁡ θ n   tan ⁡ θ n = a n b n   tan ⁡ φ n = − b n a n n = 1 , 2 , ⋯ 余弦形式:\\ f(t)=c_0+\sum_{n=1}^\infty c_n\cos(n\omega_1t+\varphi_n)\\\ \\ 正弦形式:\\ f(t)=d_0+\sum_{n=1}^\infty d_n\sin(n\omega_1t+\theta_n)\\\ \\ a_0=c_0=d_0\\ c_n=d_n=\sqrt{a_n^2+b_n^2}\\ a_n=c_n\cos\varphi_n=d_n\sin\theta_n\\ b_n=-c_n\sin\varphi_n=d_n\cos\theta_n\\\ \\ \tan\theta_n=\frac{a_n}{b_n}\\\ \\ \tan\varphi_n=-\frac{b_n}{a_n}\\ n=1,2,\cdots f(t)=c0+n=1cncos(nω1t+φn) f(t)=d0+n=1dnsin(nω1t+θn) a0=c0=d0cn=dn=an2+bn2 an=cncosφn=dnsinθnbn=cnsinφn=dncosθn tanθn=bnan tanφn=anbnn=1,2,


指 数 形 式 :   f ( t ) = ∑ n = − ∞ ∞ F ( n ω 1 ) e j n ω 1 t   F ( n ω 1 ) = 1 T 1 ∫ t 0 t 0 + T 1 f ( t ) e − j n ω 1 t d t   F ( n ω 1 ) = { 1 2 ( a n − j b n ) , n > 0 1 2 ( a n + j b n ) , n < 0   F 0 = a 0 = c 0 = d 0 ∣ F n ∣ = ∣ F − n ∣ = 1 2 c n = 1 2 d n = 1 2 a n 2 + b n 2   a n = F n + F − n   b n = j ( F n − F − n )   a n 2 + b n 2 = 4 F n F − n n = 1 , 2 , ⋯ 指数形式:\\\ \\ f(t)=\sum_{n=-\infty}^{\infty}F(n\omega_1)e^{jn\omega_1t}\\\ \\ F(n\omega_1)=\frac 1 {T_1}\int_{t_0}^{t_0+T_1}f(t)e^{-jn\omega_1t}dt\\\ \\ F(n\omega_1)= \begin{cases} \frac 1 2(a_n-jb_n), & n>0 \\ \frac 1 2(a_n+jb_n), & n<0 \\ \end{cases}\\\ \\ F_0=a_0=c_0=d_0\\ |F_n|=|F_{-n}|=\frac 1 2 c_n=\frac 1 2 d_n=\frac 1 2 \sqrt{a_n^2+b_n^2}\\\ \\ a_n=F_n+F_{-n}\\\ \\ b_n=j(F_n-F_{-n})\\\ \\ a_n^2+b_n^2=4F_nF_{-n}\\ n=1,2,\cdots  f(t)=n=F(nω1)ejnω1t F(nω1)=T11t0t0+T1f(t)ejnω1tdt F(nω1)={21(anjbn),21(an+jbn),n>0n<0 F0=a0=c0=d0Fn=Fn=21cn=21dn=21an2+bn2  an=Fn+Fn bn=j(FnFn) an2+bn2=4FnFnn=1,2,


P = f 2 ( t ) ‾ = 1 T 1 ∫ t 0 t 0 + T 1 f 2 ( t ) d t   = a 0 2 + 1 2 ∑ n = 1 ∞ ( a n 2 + b n 2 )   = c 0 2 + 1 2 ∑ n = 1 ∞ c n 2   = ∑ n = − ∞ ∞ ∣ F n ∣ 2 P=\overline{f^2(t)}=\frac 1 {T_1}\int_{t_0}^{t_0+T_1}f^2(t)dt\\\ \\ =a_0^2+\frac1 2\sum_{n=1}^\infty(a_n^2+b_n^2)\\\ \\ =c_0^2+\frac 1 2\sum_{n=1}^\infty c_n^2\\\ \\ =\sum_{n=-\infty}^\infty|F_n|^2 P=f2(t)=T11t0t0+T1f2(t)dt =a02+21n=1(an2+bn2) =c02+21n=1cn2 =n=Fn2

二、奇函数,偶函数,奇谐信号,偶谐信号

∗ ∗ 忽 略 掉 直 流 量 来 看 ∗ ∗   奇 函 数 : f ( t ) = − f ( − t ) , a n = 0   奇 谐 信 号 : f ( t ) = − f ( t ± T 2 ) , n = 1 , 3 , ⋯   ∗ ∗ 可 以 不 忽 略 直 流 量 来 看 ∗ ∗   偶 函 数 : f ( t ) = f ( − t ) , b n = 0   偶 谐 信 号 : f ( t ) = f ( t ± T 2 ) , n = 2 , 4 , ⋯   **忽略掉直流量来看**\\\ \\ 奇函数:f(t)=-f(-t),a_n=0\\\ \\ 奇谐信号:f(t)=-f(t\pm\frac T 2),n=1,3,\cdots\\\ \\ **可以不忽略直流量来看**\\\ \\ 偶函数:f(t)=f(-t),b_n=0\\\ \\ 偶谐信号:f(t)=f(t\pm\frac T 2),n=2,4,\cdots\\\ \\  f(t)=f(t),an=0 f(t)=f(t±2T),n=1,3,  f(t)=f(t),bn=0 f(t)=f(t±2T),n=2,4, 


对 任 意 周 期 信 号 f ( t ) = f ( t + T )   可 以 构 造 出 奇 谐 信 号 : F 1 ( t ) = − f ( t − T 2 ) + f ( t )   可 以 构 造 出 偶 谐 信 号 : F 2 ( t ) = f ( t − T 4 ) + f ( t + T 4 )   根 据 定 义 带 入 即 可 证 明   ∗ ∗ 对 于 非 奇 谐 非 偶 谐 的 周 期 信 号 f ( t ) ∗ ∗   F 1 ( t ) 仅 仅 能 提 供 f 的 奇 谐 部 分 F 2 ( t ) 仅 仅 能 提 供 f 的 偶 谐 部 分 把 这 两 个 部 分 相 加 才 是 信 号 f ( 别 漏 直 流 量 ) 对任意周期信号\\ f(t)=f(t+T)\\\ \\ 可以构造出奇谐信号:\\ F_1(t)=-f(t-\frac T 2)+f(t)\\\ \\ 可以构造出偶谐信号:\\ F_2(t)=f(t-\frac T 4)+f(t+\frac T 4)\\\ \\ 根据定义带入即可证明\\\ \\ **对于非奇谐非偶谐的周期信号f(t)**\\\ \\ F_1(t)仅仅能提供f的奇谐部分\\ F_2(t)仅仅能提供f的偶谐部分\\ 把这两个部分相加才是信号f(别漏直流量) f(t)=f(t+T) F1(t)=f(t2T)+f(t) F2(t)=f(t4T)+f(t+4T)  f(t) F1(t)fF2(t)ff


三、常见傅里叶级数

奇 函 数 矩 形 脉 冲 : m a x : E 2 , m i n : − E 2 f 1 ( t ) = ∑ n = 1 , 3 , ⋯ ∞ 2 E n π sin ⁡ ( n ω 1 t )   奇函数矩形脉冲:max :\frac E 2 ,min :-\frac E 2\\ f_1(t)=\sum_{n=1,3,\cdots}^\infty\frac {2E}{n\pi}\sin(n\omega_1t)\\\ \\ max:2E,min:2Ef1(t)=n=1,3,nπ2Esin(nω1t)  周 期 矩 形 波 : m a x : E , m i n : 0 , 偶 函 数 f 2 ( 0 ) = E f 2 ( t ) = E τ T 1 + ∑ n = 1 ∞ 2 E n π sin ⁡ ( n π τ T 1 ) cos ⁡ ( n ω 1 t )   周期矩形波:max: E , min: 0,\\偶函数f_2(0)=E\\ f_2(t)=\frac{E\tau}{T_1}+\sum_{n=1}^{\infty}\frac{2E}{n\pi}\sin(\frac {n\pi\tau}{T_1})\cos(n\omega_1t)\\\ \\ max:E,min:0f2(0)=Ef2(t)=T1Eτ+n=1nπ2Esin(T1nπτ)cos(nω1t)  周 期 偶 函 数 三 角 信 号 : m a x : E , m i n : 0 , 偶 函 数 f 3 ( 0 ) = 0 f 3 ( t ) = E 2 − ∑ n = 1 , 3 , ⋯ ∞ 4 E n 2 π 2 cos ⁡ ( n ω 1 t )   周期偶函数三角信号:max: E , min: 0,\\偶函数f_3(0)=0\\ f_3(t)=\frac E 2-\sum_{n=1,3,\cdots}^\infty\frac{4E}{n^2\pi^2}\cos(n\omega_1t)\\\ \\ max:E,min:0f3(0)=0f3(t)=2En=1,3,n2π24Ecos(nω1t)  半 余 弦 波 信 号 : m a x : E , m i n : 0 偶 函 数 f 4 ( 0 ) = E f 4 ( t ) = E π + E 2 cos ⁡ ( ω 1 t ) + ∑ n = 2 , 4 , ⋯ ∞ ( − 1 ) n 2 2 E ( 1 − n 2 ) π cos ⁡ ( n ω 1 t )   f 4 ( t ) = cos ⁡ ( ω 1 t ) ⋅ f 2 ( t ) 半余弦波信号:max: E , min: 0\\偶函数f_4(0)=E\\ f_4(t)=\frac E \pi+\frac E 2\cos(\omega_1t)+\sum_{n=2,4,\cdots}^\infty(-1)^{\frac n 2}\frac{2E}{(1-n^2)\pi}\cos(n\omega_1t)\\\ \\ f_4(t)=\cos(\omega_1t)\cdot f_2(t) max:E,min:0f4(0)=Ef4(t)=πE+2Ecos(ω1t)+n=2,4,(1)2n(1n2)π2Ecos(nω1t) f4(t)=cos(ω1t)f2(t) 半 余 弦 切 顶 脉 冲 信 号 : m a x : E , m i n : 0 偶 函 数 f 5 ( 0 ) = E f 5 ( t ) = E cos ⁡ ( ω 1 t ) − cos ⁡ θ 1 − cos ⁡ θ   半余弦切顶脉冲信号:max: E , min: 0\\偶函数f_5(0)=E\\ f_5(t)=E\frac{\cos(\omega_1t)-\cos\theta}{1-\cos \theta}\\\ \\ max:E,min:0f5(0)=Ef5(t)=E1cosθcos(ω1t)cosθ 

笔记

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

好的,下面是十个高等数学每章内容的应用案例,带具体公式: 1. 极限与连续:计算函数的极限和连续性,例如计算 $\lim_{x\to 0}\frac{\sin x}{x}$,以及证明函数的连续性; 2. 导数与微分:求解函数的导数和微分,例如求解 $y=\sin x$ 的导数和微分,以及应用微分求解函数的近似值; 3. 不定积分:求解函数的不定积分,例如求解 $\int \cos x \mathrm{d}x$,以及应用不定积分求解面积和体积; 4. 定积分:求解函数的定积分,例如求解 $\int_0^1 x^2 \mathrm{d}x$,以及应用定积分求解曲线长度和物理量; 5. 微分方程:求解微分方程,例如求解 $y''+y=0$,以及应用微分方程求解物理问题; 6. 矩阵论:求解矩阵的特征值和特征向量,例如求解 $\begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$ 的特征值和特征向量,以及应用矩阵求解线性方程组; 7. 傅里叶级数:将函数表示成傅里叶级数的形式,例如将周期为 $2\pi$ 的方波表示成傅里叶级数的形式,以及应用傅里叶级数求解信号处理问题; 8. 多元函数微积分学:求解多元函数的偏导数和梯度,例如求解 $f(x,y)=x^2+y^2$ 的偏导数和梯度,以及应用多元函数微积分学求解优化问题; 9. 线性代数:求解线性方程组和矩阵的行列式,例如求解 $\begin{cases} x+y+z=1 \\ 2x-y-2z=3 \\ -x+3y+z=5 \end{cases}$,以及应用线性代数求解最小二乘问题; 10. 数理统计学:计算概率分布和统计量,例如计算正态分布的概率,以及应用数理统计学分析数据。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值