泛基因组分析

1. 概述

泛基因组(Pangenome)是指一个物种内所有个体的基因组总和,包括核心基因组(core genome)和可变基因组(variable genome)。泛基因组分析是一种研究物种内部基因多样性的方法,广泛应用于微生物基因组学、植物和动物基因组学等领域。

图片

2. 泛基因组的组成

泛基因组可以分为以下几部分:

  • 核心基因组(Core Genome):所有样本中都存在的基因,是物种维持生存和基本功能所必需的。

  • 可选基因组(Accessory Genome):只在部分样本中出现的基因,这些基因通常与环境适应、抗药性、病原性等特性相关。

  • 特有基因(Unique Genes):仅在单个样本中存在的基因。

3. 泛基因组分析的意义

  • 揭示物种多样性:识别核心和可变基因,有助于理解物种内的遗传多样性。

  • 病原体研究:研究病原体的泛基因组可以揭示其抗药性和毒力基因,从而帮助开发新的治疗方法。

  • 农业研究:泛基因组分析在农作物和牲畜的遗传改良中有重要应用,能够识别有助于耐逆性或高产的基因。


泛基因组分析方法

1. 数据准备

首先,需要准备一组同一物种的基因组序列数据。通常,这些数据来自全基因组测序(WGS)

2. 数据预处理

  • 基因组装(Genome Assembly):将测序数据组装成完整的基因组序列。

  • 基因注释(Gene Annotation):识别基因组中的基因,并对其功能进行注释。

3. 泛基因组构建

  • 同源基因簇分析(Orthologous Gene Clustering):将多个基因组的基因聚类成同源基因簇。常用工具包括:

    • Roary(用于细菌泛基因组)

    • PGAP(Pangenome Analysis Pipeline)

    • PanX(带有可视化的泛基因组分析工具)

  • 泛基因组曲线(Pangenome Curve):绘制物种的核心基因和可变基因数量随样本数变化的曲线,以预测物种的泛基因组是否开放(open)或封闭(closed)。

4. 泛基因组分析工具

  • Roary:基于BLAST的快速泛基因组分析工具。

  • BPGA(Bacterial Pan-Genome Analysis):支持核心、附属和特有基因分析。

  • Panaroo:基于图的泛基因组分析工具,解决了基因组重排和拼接错误的问题。


代码实现:泛基因组分析示例

下面是一个基于 Python 的示例代码,用于使用 Biopython 和 Roary 进行细菌泛基因组分析。

1. 安装依赖

首先,需要安装必要的软件和 Python 包:

 
# 安装 Prokka (基因组注释工具)sudo apt-get updatesudo apt-get install prokka
# 安装 Roary (泛基因组分析工具)sudo apt-get install roary
# 安装 Biopythonpip install biopython

2. 数据预处理和基因注释

# 运行 Prokka 进行基因组注释prokka --outdir sample1_annotation --prefix sample1 sample1.fastaprokka --outdir sample2_annotation --prefix sample2 sample2.fastaprokka --outdir sample3_annotation --prefix sample3 sample3.fasta

3. 构建泛基因组​​​​​​​

# 提取 GFF 文件路径gff_files=$(find . -name "*.gff")
# 使用 Roary 进行泛基因组分析roary -e --mafft -p 8 -f roary_output ${gff_files}

4. 解析和可视化结果

使用 Python 解析 Roary 输出​​​​​
import pandas as pdimport matplotlib.pyplot as plt
# 读取 gene_presence_absence.csv 文件df = pd.read_csv("roary_output/gene_presence_absence.csv")
# 统计核心基因和附属基因的数量core_genes = df[df["No. isolates"] == len(df.columns) - 14]accessory_genes = df[df["No. isolates"] < len(df.columns) - 14]
print(f"核心基因数量: {len(core_genes)}")print(f"附属基因数量: {len(accessory_genes)}")
# 绘制泛基因组曲线sample_counts = range(1, len(df.columns) - 13)core_counts = [len(df[df["No. isolates"] >= i]) for i in sample_counts]
plt.plot(sample_counts, core_counts, label='Core Genome', color='blue')plt.xlabel("Number of Genomes")plt.ylabel("Number of Core Genes")plt.title("Pangenome Curve")plt.legend()plt.grid()plt.show()

示例输出
  • 核心基因数量: 1200

  • 附属基因数量: 3500

5. 泛基因组曲线解释

  • 封闭泛基因组:当样本数增加时,核心基因数趋于稳定,而新基因的出现逐渐减少。

  • 开放泛基因组:当样本数增加时,新的基因不断被发现。


1. 背景和意义

泛基因组分析最初在微生物学领域获得广泛应用,但随着测序技术的进步,它逐渐被应用于植物动物的基因组研究。通过对多个个体基因组进行比较,泛基因组分析可以揭示物种内部的基因多样性、进化历史以及对环境的适应性。特别是在作物改良和畜牧业中,它提供了丰富的基因资源,可以用于开发抗病、高产、耐逆境的新品种。

2. 泛基因组的组成

  • 核心基因组(Core Genome):在所有个体中都保守存在的基因,通常与基本生命功能相关。

  • 可变基因组(Accessory Genome)

    • 泛基因(Dispersed Genes):只在部分个体中存在,通常与特定环境适应性或性状相关。

    • 特有基因(Private Genes):只在单一基因组中出现。

    • 重复基因家族(Gene Family Expansion):特定基因家族在不同品系中扩增,可能与特定功能(如抗逆性)相关。

3. 应用场景

  • 植物泛基因组分析

    • 研究植物品种的多样性,发掘抗逆性和高产基因。

    • 优化作物育种策略,提高作物的适应性和产量。

  • 动物泛基因组分析

    • 研究家畜的性状多样性(如奶牛的产奶量、抗病性)。

    • 阐明野生物种的遗传多样性和保护策略。


泛基因组分析的主要步骤

1. 数据收集

  • 样本选择:从不同的个体、品系或品种中收集样本(通常使用高质量的参考基因组作为基础)。

  • 测序技术

    • Illumina:短读长,适合基因组重测序。

    • PacBio/ONT(Oxford Nanopore):长读长,适合基因组组装和结构变异分析。

2. 数据预处理

  • 质量控制(Quality Control)

    • 使用 FastQC 和 Trimmomatic 对测序数据进行质量评估和过滤。

  • 基因组组装(Assembly)

    • 使用 SPAdes(短读长)或 Canu(长读长)等工具进行基因组组装。

  • 基因注释(Annotation)

    • 使用 MakerAugustus 或 Braker 进行基因注释。

3. 泛基因组构建

  • 基因预测和注释

    • 对所有样本的基因组进行基因预测,并对其进行功能注释。

  • 同源基因聚类(Orthologous Clustering)

    • 使用 OrthoFinder 或 Orthofinder2 进行同源基因簇分析。

  • 泛基因组构建

    • 使用 GET_HOMOLOGUESRoary 或 Panaroo 构建泛基因组。

4. 泛基因组分析与可视化

  • 核心基因和可变基因分析

  • 功能富集分析(Gene Ontology Enrichment Analysis)

    • 使用 eggNOG-mapper 或 DAVID 进行功能富集分析。

  • 泛基因组曲线(Pangenome Curve)

    • 评估核心基因和可变基因数量随样本数增加的变化趋势。

  • 结构变异分析(Structural Variation Analysis)

    • 使用 Sniffles 和 PBSV 检测结构变异,如基因组重排和大片段插入/缺失。


示例:植物泛基因组分析(以水稻为例)

1. 安装工具

# 安装 Condawget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.shbash Miniconda3-latest-Linux-x86_64.sh
# 创建环境并安装工具conda create -n pangenome_analysis python=3.8conda activate pangenome_analysis
# 安装 GET_HOMOLOGUES 工具conda install -c bioconda get_homologues

2. 数据预处理与基因注释

​​​​​​​
# 下载参考基因组和样本基因组数据
wget ftp://example.com/rice_genome1.fastawget ftp://example.com/rice_genome2.fasta
# 基因注释(以 Prokka 为例)prokka --outdir genome1_annotation --prefix genome1 rice_genome1.fastaprokka --outdir genome2_annotation --prefix genome2 rice_genome2.fasta

3. 泛基因组构建

​​​​​​​
# 构建同源基因簇get_homologues.pl -d genome1_annotation/*.faa genome2_annotation/*.faa -t 8 -M -o rice_pangenome
# 生成核心和泛基因组报告get_homologues.pl -d rice_pangenome -t 8 -M -n

4. 数据解析和可视化(Python 代码)

​​​​​​​
import pandas as pdimport matplotlib.pyplot as plt
# 读取 core_genes_matrix.tsv 文件df = pd.read_csv("rice_pangenome/core_genes_matrix.tsv", sep='\t', index_col=0)
# 统计核心基因数量core_genes = df[(df == 1).all(axis=1)]accessory_genes = df[(df == 1).any(axis=1) & ~(df == 1).all(axis=1)]
print(f"核心基因数量: {len(core_genes)}")print(f"可变基因数量: {len(accessory_genes)}")
# 绘制泛基因组曲线sample_counts = range(1, len(df.columns) + 1)core_counts = [len(df[(df.iloc[:, :i] == 1).all(axis=1)]) for i in sample_counts]acc_counts = [len(df[(df.iloc[:, :i] == 1).any(axis=1)]) for i in sample_counts]
plt.figure(figsize=(10, 6))plt.plot(sample_counts, core_counts, label='Core Genome', color='green')plt.plot(sample_counts, acc_counts, label='Accessory Genome', color='orange')plt.xlabel("Number of Genomes")plt.ylabel("Number of Genes")plt.title("Pangenome Curve of Rice")plt.legend()plt.grid()plt.show()

示例输出:
  • 核心基因数量: 15000

  • 可变基因数量: 8000

5. 解释结果

  • 开放泛基因组:如果可变基因数量随着样本增加不断增加,说明物种基因组是开放的(如大多数野生植物)。

  • 封闭泛基因组:如果核心基因趋于稳定,则物种基因组是封闭的(如家养植物和动物)。


总结

  • 动物和植物泛基因组分析 为理解物种内部的遗传多样性提供了丰富的信息,帮助揭示基因组的功能和适应性。

  • 植物研究:可以用于提高作物的抗逆性、产量和营养价值。

  • 动物研究:可以帮助改善家畜的性状选择和保护濒危物种。

通过以上示例,可以使用多种工具和方法来进行泛基因组分析,结合编程和统计工具(如 Python 和 R)进行深入的数据分析和可视化。这种方法在农业、生态学和生物技术领域具有广泛的应用潜力。

1. 背景与重要性

动物泛基因组分析 是通过整合多个个体的基因组数据来研究物种内部的遗传多样性。与植物和微生物相比,动物的基因组通常更大且更复杂,因此需要更先进的工具和方法。通过泛基因组分析,可以更深入地理解动物物种的进化历史、功能基因的多样性,以及环境适应性等。这在以下领域具有重要应用:

  • 家畜改良:识别与产奶量、肉质、抗病性等性状相关的基因,用于牲畜的基因选择和育种。

  • 濒危物种保护:了解濒危动物的遗传多样性,制定更有效的保护策略。

  • 人类健康:研究模式生物(如小鼠、大鼠)的泛基因组,揭示与人类疾病相关的基因。

  • 野生动物适应性研究:揭示野生物种如何通过遗传多样性适应不同环境压力(如气候变化)。


2. 泛基因组的组成

  • 核心基因组(Core Genome):在所有个体中都保守存在的基因,通常与基本的生理功能相关。

  • 可变基因组(Accessory Genome):包括下列类型:

    • 泛基因(Dispersed Genes):在部分个体中存在,与特定适应性或环境压力响应相关。

    • 特有基因(Private Genes):仅在单个个体中发现的基因,通常与特殊的环境适应性相关。

    • 重复扩增基因家族(Expanded Gene Families):某些基因家族在特定物种或亚种中扩增,可能与其特定功能有关。


3. 动物泛基因组分析的主要步骤

步骤 1:数据收集
  • 样本选择

    • 多个个体、亚种或近缘物种的基因组。

    • 高质量的参考基因组(参考基因组通常来自于已知的代表性个体)。

  • 测序技术

    • 短读长测序(Illumina):适合基因组重测序。

    • 长读长测序(PacBio, Oxford Nanopore Technologies, ONT):适合基因组组装和结构变异检测。

    • Hi-C 技术:用于基因组的三维结构和染色体水平组装。

步骤 2:基因组组装和注释
  • 质量控制(Quality Control)

    • 使用 FastQC 评估测序数据质量。

    • 使用 Trimmomatic 或 fastp 对低质量数据进行过滤。

  • 基因组组装

    • 短读长数据SPAdesSOAPdenovo

    • 长读长数据CanuFlyeHiFi ASM(PacBio)。

  • 基因注释

    • 使用 AugustusMaker, 或 Braker 进行基因注释。

    • 结合转录组数据(如 RNA-Seq)提高注释精度。

步骤 3:泛基因组构建
  • 基因预测和功能注释

    • 提取所有样本的基因序列(CDS)并进行功能注释(InterProScaneggNOG-mapper)。

  • 同源基因聚类(Orthologous Clustering)

    • 使用 OrthoFinderGET_HOMOLOGUES, 或 PIRATE 等工具进行同源基因聚类分析。

  • 泛基因组构建与分类

    • 通过泛基因组工具构建核心基因组和可变基因组。

    • 常用工具:PanarooPanXRoary(适用于细菌,但可用于小型基因组动物研究)。

步骤 4:泛基因组分析与可视化
  • 功能富集分析

    • 使用 GO enrichment analysis 或 KEGG pathway analysis 进行基因功能富集分析。

  • 基因家族扩增分析

    • 识别基因家族的扩增与收缩,评估与特定性状的关联。

  • 泛基因组曲线绘制

    • 核心基因与可变基因的数量随样本增加的变化趋势,用以判断基因组是“开放”还是“封闭”。


动物泛基因组分析示例(以奶牛为例)

1. 环境配置与安装

​​​​​​​
# 安装 Minicondawget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.shbash Miniconda3-latest-Linux-x86_64.sh
# 创建虚拟环境conda create -n animal_pangenome python=3.10conda activate animal_pangenome
# 安装必要的工具conda install -c bioconda orthofinder prokka fastqc trimmomatic eggnog-mapper

2. 数据预处理

​​​​​​​
# 质量控制fastqc sample1_R1.fastq sample1_R2.fastqtrimmomatic PE sample1_R1.fastq sample1_R2.fastq \  sample1_R1_trimmed.fastq sample1_R1_unpaired.fastq \  sample1_R2_trimmed.fastq sample1_R2_unpaired.fastq \  ILLUMINACLIP:TruSeq3-PE.fa:2:30:10 SLIDINGWINDOW:4:15 MINLEN:36

3. 基因组组装与注释

​​​​​​​
# 组装基因组(以 SPAdes 为例)spades.py -1 sample1_R1_trimmed.fastq -2 sample1_R2_trimmed.fastq -o assembly_output
# 基因注释(Prokka)prokka --outdir annotation_output --prefix sample1 assembly_output/scaffolds.fasta

4. 同源基因聚类与泛基因组构建

 
# 使用 OrthoFinder 进行同源基因聚类orthofinder -f annotation_output/
# 生成核心和泛基因组分析结果orthofinder -og annotation_output/

5. 泛基因组分析与可视化(Python 代码示例)

​​​​​​​
import pandas as pdimport matplotlib.pyplot as plt
# 读取 OrthoFinder 输出的基因簇数据df = pd.read_csv("Orthogroups/Orthogroups.GeneCount.tsv", sep='\t')
# 统计核心基因和可变基因total_samples = len(df.columns) - 1core_genes = df[(df.iloc[:, 1:] > 0).sum(axis=1) == total_samples]accessory_genes = df[(df.iloc[:, 1:] > 0).sum(axis=1) < total_samples]
print(f"核心基因数量: {len(core_genes)}")print(f"可变基因数量: {len(accessory_genes)}")
# 绘制泛基因组曲线sample_counts = range(1, total_samples + 1)core_counts = [len(df[(df.iloc[:, 1:i+1] > 0).all(axis=1)]) for i in sample_counts]acc_counts = [len(df[(df.iloc[:, 1:i+1] > 0).any(axis=1)]) for i in sample_counts]
plt.figure(figsize=(10, 6))plt.plot(sample_counts, core_counts, label='Core Genome', color='blue')plt.plot(sample_counts, acc_counts, label='Accessory Genome', color='orange')plt.xlabel("Number of Genomes")plt.ylabel("Number of Genes")plt.title("Pangenome Curve of Cattle")plt.legend()plt.grid(True)plt.show()

6. 结果解释

  • 核心基因:与所有样本共有的基因,通常与基本生理功能和物种维持相关。

  • 可变基因:在部分样本中出现的基因,与环境适应、疾病抵抗和性状多样性相关。

  • 泛基因组曲线:曲线趋于平稳说明基因组是“封闭”的,而曲线不断上升则表示“开放”的基因组。


总结

1. 动物泛基因组分析的挑战

  • 基因组复杂性:动物基因组通常更大且更复杂(重复序列、基因家族扩增),需要更高效的算法。

  • 计算资源需求:泛基因组分析需要处理大量数据,尤其是当涉及长读长测序时。

  • 数据标准化:不同来源

生信大白记第31记,就到这里,关注我!

下一记,持续更新学习生物信息学的内容!

生信大白记邮箱账号:shengxindabaiji@163.com

生信大白记简书账号:生信大白记

生信大白记CSDN账号:生信大白记

生信大白记微信公众号:生信大白记

加入生信大白记交流群938339543

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值