【综述型论文】图神经网络总结

以下内容基于如下文献:

A Comprehensive Survey on Graph Neural Networks

图神经网络

基于模型结构分类的图神经网络

  • 常见循环图神经网络和卷积神经网络
    在这里插入图片描述
  • 常见卷积神经网络的性能比较
    在这里插入图片描述

1. 循环图神经网络(ResGNNs)

循环图神经网络(Recurrent graph neural networks,ResGNNs):假设图中的一个节点不断地与它的邻居交换信息/消息,直到达到稳定的平衡
在这里插入图片描述

2. 卷积图神经网络

卷积图神经网络(Convolutional graph neural networks, ConvGNNs):是通过聚集节点 v v v 自身的特征 x v x_v xv 和邻居的特征 x u x_u xu来生成节点v的表示,其中 u ∈ N ( v ) u∈N(v) uN(v)。与RecGNNs不同,ConvGNNs堆叠多个图卷积层来提取高级节点表示。下图(a)表示节点分类,图(b)表示图分类。
在这里插入图片描述

基于谱域的ConvGNNs(Spectral-based ConvGNNs)

在这里插入图片描述

代表模型:ChebNet、GCN、DGCN(Directed Graph Convolutional Network)、lightGCN

基于空域的ConvGNNs(Spatial-based ConvGNNs)

在这里插入图片描述

代表模型:GraphSage、GAT、LGCN、DGCNN、DGI、ClusterGCN

谱域图卷积模型和空域图卷积模型的对比

由于效率、通用性和灵活性问题,空间模型比谱模型更受欢迎。

  1. 谱模型的效率低于空间模型:谱模型要么需要进行特征向量计算,要么需要同时处理整个图。空间模型通过信息传播直接在图域进行卷积,因此对大型图具有更强的可伸缩性。计算可以在一批节点中进行,而不是在整个图中进行。
  2. 依赖于图傅里叶基的谱模型对新图的泛化能力较差:他们假设一个固定的图形。对图的任何扰动都会导致特征基的变化。基于空间的模型在每个节点上执行局部图卷积,其中权重可以在不同的位置和结构之间轻松共享。
  3. 基于谱的模型仅限于在无向图上操作。基于空间的模型更灵活地处理多源图输入:如边输入[15],[27],[86],[95],[96],有向图[25],[72],有符号图[97],异构图[98],[99],因为这些图输入可以很容易地合并到聚合函数中。
图卷积模型中的下采样策略

在GNN生成节点特征后,我们可以将其用于最后的任务。但是,直接使用所有这些特征在计算上具有挑战性,因此,需要一个下采样策略。根据目标和它在网络中扮演的角色,这种策略有不同的名称,但它们的机制非常相似。:

  • 池化(pooling):旨在通过对节点进行下采样来减少参数的大小,以生成更小的表示,从而避免过拟合、排列不变性和计算复杂性问题
  • 读出(readout):主要用于生成基于节点表示的图级表示。
    h G = m e a n / m a x / s u m ( h 1 ( K ) , h 2 ( K ) , . . . , h n ( K ) ) , K 是当前最后一个图卷积层的索引。 h_G = mean/max/sum(h_1^{(K)},h_2^{(K)},...,h_n^{(K)}),K是当前最后一个图卷积层的索引。 hG=mean/max/sum(h1(K),h2(K),...,hn(K))K是当前最后一个图卷积层的索引。

3. 图自编码器(GAEs)

图自编码器(Graph autoencoders ,GAEs):是一种无监督学习框架,它将节点/图编码到潜在的向量空间中,并从编码的信息重构图数据。GAEs用于学习网络嵌入和图生成分布。图©展示了用于网络嵌入的GAE。
在这里插入图片描述
在这里插入图片描述

4. 时空图神经网络(STGNNs)

时空图神经网络(Spatial-temporal graph neural networks,STGNNs)旨在从时空图中学习隐藏模式,这在各种应用中变得越来越重要,如交通速度预测[72]、驾驶员机动预测[73]和人体动作识别[75]。stgnn的关键思想是同时考虑空间依赖性和时间依赖性。图(d)展示了用于时空图预测的STGNN。
在这里插入图片描述
代表模型:

GCRN、DCRNN、Structural-RNN 、ST-GCN、StemGNN

总结

  • 循环图神经网络(ResGNNs):GNN、GraphESN、GGNN、SSE

循环图神经网络详解

  • 基于谱域的ConvGNNs:ChebNet、GCN、DGCN(Directed Graph Convolutional Network)、lightGCN
  • 基于空域的ConvGNNs:GraphSage、GAT、LGCN、DGCNN、DGI、ClusterGCN
  • 图自编码器(GAEs):GAE、VGAE
  • 时空图神经网络(STGNNs):GCRN、DCRNN、Structural-RNN 、ST-GCN、StemGNN

循环图神经网络和时空图神经网络的区别

  • 循环图神经网络:将时序神经网络模型放到图神经网络内部(消息传播机制(propagation)中),以减少图中的拓扑结构信息在传播过程中造成的损失
  • 时空图神经网络:将时序神经网络模型放到图神经网络外部,以获取图结构的时间和空间信息。

可以简单地理解为:循环图神经网络是将时序模型嵌入到图模型中,时空图神经网络是将图模型嵌入到时序模型中(或将二者结合)

图模型分类

图类型适用情况

1. 有向图

适用模型GraphSAGEGATDirectedGCN

2. 无向图

适用模型GCN

3. 异构图

异构图:指存在几种不同类型的节点

适用模型:GraphSAGE、GAT

4. 带边信息的图

带边信息的图:边带有额外的信息。有两种解决方案:

  • 把这类图查分成二部图(二部图:把一个图的顶点划分为两个不相交子集 ,使得每一条边都分别能连接两个集合中的顶点。如果存在这样的划分,则此图为一个二分图),把带信息的边变成节点。即:开始节点 - 边节点 - 结束节点
  • 对于不同类型的边采用不同的权重矩阵来传播

5. 动态图

动态图:将复杂网络表示为随时间变化的结构

https://arxiv.org/pdf/2005.07496.pdf
https://arxiv.org/pdf/2203.10480.pdf

6. 多维图

多维图指的是节点之间有多种关系,形成一个多维度的图

适用模型:RGCN

其他

循环图神经网络(ResGNNs):

模型:GNN、GraphESN、GGNN、SSE

循环图神经网络详解

基于谱域的ConvGNNs:

模型:ChebNet、GCN、DGCN(Directed Graph Convolutional Network)、lightGCN

基于空域的ConvGNNs:

模型:GraphSage、GAT、LGCN、DGCNN、DGI、ClusterGCN

图自编码器(GAEs):

模型:GAE、VGAE

时空图神经网络(STGNNs):

模型:GCRN、DCRNN、Structural-RNN 、ST-GCN、StemGNN

效率

模型:FastGCN、ClusterGCN

无监督

模型:DGI

将CNN的原理应用于图卷积

模型:LGCN

编码

模型:GAE、VGAE

时空

数据集

在这里插入图片描述

学术单词

  • Taking sth as an example:以…为例
  • 2
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
回答: 神经网络的经典算法主要包括卷积网络(Graph Convolutional Networks,GCN)和注意力网络(Graph Attention Networks,GAT)。卷积网络是通过对结构进行类似于像卷积的操作来进行节点分类任务的,具体的计算公式可以参考相关文献。而注意力网络则通过消息传递的方式来进行节点分类,利用注意力机制来对不同节点之间的关系进行建模,从而提高模的表达能力。注意力网络也是网络中的一个重要算法,可以应用于多种结构的场景。除了这些经典算法之外,还有其他的网络结构,如自编码器(Graph Auto-encoders)、生成网络(Graph Generative Networks)和时空网络(Graph Spatial-Temporal Networks),详细分类可参考相关综述论文。此外,当前大多数神经网络处理的是静态同质(homogeneous graph),但在实际应用中,动态异构(dynamic and heterogeneous graph)的处理也变得越来越重要。因此,对于动态异构结构的处理,需要开发新的方法。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [神经网络学习笔记-03神经网络算法(上)](https://blog.csdn.net/weixin_43499292/article/details/121983943)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT0_1"}}] [.reference_item style="max-width: 50%"] - *2* *3* [神经网络GNN总结](https://blog.csdn.net/Frank_LJiang/article/details/95194733)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT0_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值