多事之秋

36 篇文章 0 订阅
27 篇文章 0 订阅

第三部分 模糊函数

3.1模糊函数

模糊函数的波形如下:

x ( τ , f d ) = ∫ − ∞ ∞ s ~ ( t ) s ~ ∗ ( t − τ ) e j 2 π f d t d t = ∑ k = 1 N ∑ l = 1 N ∫ − ∞ ∞ [ r e c t ( t N T ) r e c t ( t − τ N T ) ⋅ r e c t ( t − ( k − 1 ) T T ) r e c t ( t − τ − ( l − 1 ) T T ) ⋅ e j π ( p l q l τ 2 T + p l − p k 2 − μ τ 2 ) e j 2 π ( μ τ + ( p k q k − p l q l ) 4 T + f d ) t ] d t ( 11 ) x({\tau},f_d)={\int\limits_{-\infty}^{\infty}}{\tilde{s}}(t){\tilde{s}}^{*}(t-{\tau})e^{j2{\pi}f_dt}{\mathrm{d}}t\\={\sum\limits_{k=1}^{N}}{\sum\limits_{l=1}^{N}}{\int\limits_{-\infty}^{\infty}}[rect\Bigg({\frac{t}{NT}}\Bigg)rect\Bigg({\frac{t-{\tau}}{NT}}\Bigg){\cdot}rect\Bigg({\frac{t-(k-1)T}{T}}\Bigg)rect\Bigg({\frac{t-{\tau}-(l-1)T}{T}}\Bigg){\cdot}e^{j{\pi}\Big(p_lq_l{\frac{\tau}{2T}}+{\frac{p_l-p_k}{2}}-{\mu}{\tau}^2\Big)}e^{j2{\pi}\Big({\mu}{\tau}+{\frac{(p_kq_k-p_lq_l)}{4T}}+f_d\Big)t}]{\mathrm{d}}t{\qquad}{\qquad}(11)\\ x(τ,fd)=s~(t)s~(tτ)ej2πfdtdt=k=1Nl=1N[rect(NTt)rect(NTtτ)rect(Tt(k1)T)rect(Ttτ(l1)T)ejπ(plql2Tτ+2plpkμτ2)ej2π(μτ+4T(pkqkplql)+fd)t]dt(11)

化简等式(11),模糊函数的最终表达式为:

A . A. A. 0 ≤ τ ≥ N T 0{\leq}{\tau}{\geq}NT 0τNT

x ( τ , f d ) = ∑ i = 0 N − 1 { r e c t ( τ − i T T ) ⋅ [ ∑ l = 1 N − i ∫ ( l − 1 ) T + τ ( l + i ) T f ( l + i , l , t ) d t + ∑ l = 1 N − i − 1 ∫ ( l + i ) T l T + τ f ( l + i + 1 , l , t ) d t ] } ( 12 ) x({\tau},f_d)={\sum\limits_{i=0}^{N-1}}{\bigg\{rect\Bigg({\frac{{\tau}-iT}{T}}\Bigg){\cdot}\Bigg[{\sum\limits_{l=1}^{N-i}}{\int\limits_{(l-1)T+{\tau}}^{(l+i)T}}f(l+i,l,t){\mathrm{d}}t+{\sum\limits_{l=1}^{N-i-1}}{\int\limits^{lT+{\tau}}_{(l+i)T}}f(l+i+1,l,t){\mathrm{d}}t \Bigg]\bigg\}}{\qquad}(12) x(τ,fd)=i=0N1{rect(TτiT)[l=1Ni(l1)T+τ(l+i)Tf(l+i,l,t)dt+l=1Ni1(l+i)TlT+τf(l+i+1,l,t)dt]}(12)

B . B. B. − N T ≤ τ ≥ 0 -NT{\leq}{\tau}{\geq}0 NTτ0

x ( τ , f d ) = ∑ i = − 1 − N { r e c t ( τ − i T T ) ⋅ [ ∑ l = 1 − i N ∫ ( l − 1 ) T + τ ( l + i ) T f ( l + i , l , t ) d t + ∑ l = − i N − i − 1 ∫ ( l + i ) T l T + τ f ( l + i + 1 , l , t ) d t ] } ( 13 ) x({\tau},f_d)={\sum\limits_{i=-1}^{-N}}{\bigg\{rect\Bigg({\frac{{\tau}-iT}{T}}\Bigg){\cdot}\Bigg[{\sum\limits_{l=1-i}^{N}}{\int\limits_{(l-1)T+{\tau}}^{(l+i)T}}f(l+i,l,t){\mathrm{d}}t+{\sum\limits_{l=-i}^{N-i-1}}{\int\limits^{lT+{\tau}}_{(l+i)T}}f(l+i+1,l,t){\mathrm{d}}t \Bigg]\bigg\}}{\qquad}(13) x(τ,fd)=i=1N{rect(TτiT)[l=1iN(l1)T+τ(l+i)Tf(l+i,l,t)dt+l=iNi1(l+i)TlT+τf(l+i+1,l,t)dt]}(13)

其中

f ( k , l , t ) = e j π ( p l q l 2 T τ + p l − p k 2 − μ τ 2 ) e j 2 π ( ( p k q k − p l q l ) 4 T + μ τ + f d ) t ( 14 ) f(k,l,t)=e^{j{\pi}\big({\frac{p_lq_l}{2T}}{\tau}+{\frac{p_l-p_k}{2}}-{\mu}{\tau}^2\Big)}e^{j2{\pi}\big({\frac{(p_kq_k-p_lq_l)}{4T}}+{\mu}{\tau}+f_d\Big)t}{\qquad}(14) f(k,l,t)=ejπ(2Tplqlτ+2plpkμτ2)ej2π(4T(pkqkplql)+μτ+fd)t(14)

∫ a b f ( k , l , t ) d t = e j π ( p l q l τ 2 T + p l − p k 2 − μ τ 2 ) ⋅ e j π ( μ τ + p k q k − p l q l 4 T + f d ) ( b + a ) ⋅ ( b − a ) s i n c ( ( μ τ + p k q k − p l q l 4 T + f d ) ( b − a ) ) ( 15 ) {\int\limits_a^b}f(k,l,t){\mathrm{d}}t=e^{j{\pi}\big(p_lq_l{\frac{\tau}{2T}}+{\frac{p_l-p_k}{2}}-{\mu}{\tau}^2\Big)}{\cdot}e^{j{\pi}\big({\mu}{\tau}+{\frac{p_kq_k-p_lq_l}{4T}}+f_d\Big)(b+a)}{\cdot}(b-a)sinc\Bigg(({\mu}{\tau}+{\frac{p_kq_k-p_lq_l}{4T}}+f_d)(b-a)\Bigg){\qquad}(15) abf(k,l,t)dt=ejπ(plql2Tτ+2plpkμτ2)ejπ(μτ+4Tpkqkplql+fd)(b+a)(ba)sinc((μτ+4Tpkqkplql+fd)(ba))(15)

||代码附录:

x({\tau},f_d)={\int\limits_{-\infty}^{\infty}}{\tilde{s}}(t){\tilde{s}}^{*}(t-{\tau})
e^{j2{\pi}f_dt}{\mathrm{d}}t\\
={\sum\limits_{k=1}^{N}}{\sum\limits_{l=1}^{N}}{\int\limits_{-\infty}^{\infty}}
[rect\Bigg({\frac{t}{NT}}\Bigg)rect\Bigg({\frac{t-{\tau}}{NT}}\Bigg)
{\cdot}rect\Bigg({\frac{t-(k-1)T}{T}}\Bigg)rect\Bigg({\frac{t-{\tau}-(l-1)T}{T}}\Bigg)
{\cdot}e^{j{\pi}\Big(p_lq_l{\frac{\tau}{2T}}+{\frac{p_l-p_k}{2}}-{\mu}{\tau}^2\Big)}
e^{j2{\pi}\Big({\mu}{\tau}+{\frac{(p_kq_k-p_lq_l)}{4T}}+f_d\Big)t}]{\mathrm{d}}t
{\qquad}{\qquad}(11)\\



x({\tau},f_d)={\sum\limits_{i=0}^{N-1}}{\bigg\{rect\Bigg({\frac{{\tau}-iT}{T}}\Bigg)
{\cdot}\Bigg[{\sum\limits_{l=1}^{N-i}}{\int\limits_{(l-1)T+{\tau}}^{(l+i)T}}f(l+i,l,t){\mathrm{d}}t
+{\sum\limits_{l=1}^{N-i-1}}{\int\limits^{lT+{\tau}}_{(l+i)T}}f(l+i+1,l,t){\mathrm{d}}t
\Bigg]\bigg\}}{\qquad}(12)




x({\tau},f_d)={\sum\limits_{i=-1}^{-N}}{\bigg\{rect\Bigg({\frac{{\tau}-iT}{T}}\Bigg)
{\cdot}\Bigg[{\sum\limits_{l=1-i}^{N}}{\int\limits_{(l-1)T
+{\tau}}^{(l+i)T}}f(l+i,l,t){\mathrm{d}}t
+{\sum\limits_{l=-i}^{N-i-1}}{\int\limits^{lT+{\tau}}_{(l+i)T}}f(l+i+1,l,t){\mathrm{d}}t
\Bigg]\bigg\}}{\qquad}(13)




f(k,l,t)=e^{j{\pi}\big({\frac{p_lq_l}{2T}}{\tau}+{\frac{p_l-p_k}{2}}-{\mu}{\tau}^2\Big)}
e^{j2{\pi}\big({\frac{(p_kq_k-p_lq_l)}{4T}}+{\mu}{\tau}+f_d\Big)t}{\qquad}(14)



{\int\limits_a^b}f(k,l,t){\mathrm{d}}t=e^{j{\pi}\big(p_lq_l{\frac{\tau}{2T}}+{\frac{p_l-p_k}{2}}-{\mu}{\tau}^2\Big)}
{\cdot}e^{j{\pi}\big({\mu}{\tau}+{\frac{p_kq_k-p_lq_l}{4T}}+f_d\Big)(b+a)}
{\cdot}(b-a)sinc\Bigg(({\mu}{\tau}+{\frac{p_kq_k-p_lq_l}{4T}}+f_d)(b-a)\Bigg){\qquad}(15)



  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值