微积分-定积分4.3(微积分基本定理)

微积分基本定理之所以得名是因为它建立了微积分的两个分支之间的联系:微分学和积分学。微分学源于切线问题,而积分学则源于一个看似无关的问题,即面积问题。牛顿在剑桥的导师Isaac Barrow(1630–1677)发现这两个问题实际上密切相关。实际上,他意识到微分和积分是互为逆过程的。微积分基本定理精确地揭示了导数和积分之间的逆关系。正是牛顿和莱布尼茨利用这一关系,将微积分发展成为一种系统的数学方法。特别是,他们发现基本定理使得他们无需像我们在第4.1和4.2节中那样通过求和的极限来计算面积和积分。

基本定理的第一部分涉及由如下形式方程定义的函数:

g ( x ) = ∫ a x f ( t )   d t g(x) = \int_{a}^{x} f(t) \, dt g(x)=axf(t)dt

其中, f f f 是在区间 [ a , b ] [a, b] [a,b] 上的连续函数,而 x x x a a a b b b 之间变化。注意, g g g 仅依赖于 x x x,即积分的上限变量。如果 x x x 是一个固定数,那么积分 ∫ a x f ( t )   d t \int_{a}^{x} f(t) \, dt axf(t)dt 就是一个确定的数值。如果我们让 x x x 变化,积分 ∫ a x f ( t )   d t \int_{a}^{x} f(t) \, dt axf(t)dt 也会变化,从而定义了一个函数 g ( x ) g(x) g(x)

如果 f f f 是一个正函数,那么 g ( x ) g(x) g(x) 可以解释为从 a a a x x x f f f 曲线下方的面积,其中 x x x 可以从 a a a b b b 变化。(可以将 g g g 视为“至今为止的面积函数”;见图1。)
在这里插入图片描述

例1 根据图2中显示的函数 f f f 和定义的 g ( x ) = ∫ 0 x f ( t ) d t g(x) = \int_{0}^{x} f(t) dt g(x)=0xf(t)dt,求出 g ( 0 ) g(0) g(0) g ( 1 ) g(1) g(1) g ( 2 ) g(2) g(2) g ( 3 ) g(3) g(3) g ( 4 ) g(4) g(4) g ( 5 ) g(5) g(5) 的值,并粗略地画出 g g g 的图像。
在这里插入图片描述

首先,注意到 g ( 0 ) = ∫ 0 0 f ( t ) d t = 0 g(0) = \int_{0}^{0} f(t) dt = 0 g(0)=00f(t)dt=0。从图3可以看到, g ( 1 ) g(1) g(1) 是一个三角形的面积:

g ( 1 ) = ∫ 0 1 f ( t ) d t = 1 2 ( 1 × 2 ) = 1 g(1) = \int_{0}^{1} f(t) dt = \frac{1}{2} (1 \times 2) = 1 g(1)=01f(t)dt=21(1×2)=1

对于 g ( 2 ) g(2) g(2),我们在 g ( 1 ) g(1) g(1) 的基础上加上长方形的面积:

g ( 2 ) = ∫ 0 1 f ( t ) d t + ∫ 1 2 f ( t ) d t = 1 2 ( 1 × 2 ) + 2 = 3 g(2) = \int_{0}^{1} f(t) dt + \int_{1}^{2} f(t) dt = \frac{1}{2} (1 \times 2) + 2 = 3 g(2)=01f(t)dt+12f(t)dt=21(1×2)+2=3

对于 g ( 3 ) g(3) g(3),进行估值:

g ( 3 ) = g ( 2 ) + ∫ 2 3 f ( t ) d t ≈ 3 + 1.3 = 4.3 g(3) = g(2) + \int_{2}^{3} f(t) dt \approx 3 + 1.3 = 4.3 g(3)=g(2)+23f(t)dt3+1.3=4.3

对于 t > 3 t > 3 t>3 时, f ( t ) f(t) f(t) 是负值,因此我们开始减去面积:

g ( 4 ) = g ( 3 ) + ∫ 3 4 f ( t ) d t ≈ 4.3 + ( − 1.3 ) = 3.0 g(4) = g(3) + \int_{3}^{4} f(t) dt \approx 4.3 + (-1.3) = 3.0 g(4)=g(3)+34f(t)dt4.3+(1.3)=3.0

g ( 5 ) = g ( 4 ) + ∫ 4 5 f ( t ) d t ≈ 3 + ( − 1.3 ) = 1.7 g(5) = g(4) + \int_{4}^{5} f(t) dt \approx 3 + (-1.3) = 1.7 g(5)=g(4)+45f(t)dt3+(1.3)=1.7
在这里插入图片描述

根据这些数值,我们可以绘制 g g g 的图像。注意,由于在 t < 3 t < 3 t<3 f ( t ) f(t) f(t) 为正值,因此我们不断累加面积,使得 g g g x = 3 x = 3 x=3 达到最大值。而对于 x > 3 x > 3 x>3,由于 f ( t ) f(t) f(t) 为负值, g g g 开始下降。

在这里插入图片描述

如果我们取 f ( t ) = t f(t) = t f(t)=t a = 0 a = 0 a=0,那么根据前面的练习,我们有:

g ( x ) = ∫ 0 x t   d t = x 2 2 g(x) = \int_{0}^{x} t \, dt = \frac{x^2}{2} g(x)=0xtdt=2x2

注意到 g ′ ( x ) = x g'(x) = x g(x)=x,即 g ′ = f g' = f g=f g g g 实际上是 f f f 的一个反导数,至少在这种情况下是这样。如果我们通过估计切线的斜率来绘制图4中函数 g g g 的导数图像,我们得到的图像类似于图2中的 f f f 的图像。因此,我们猜测在例1中, g ′ = f g' = f g=f 也是成立的。

为了理解为什么这一般是正确的,我们考虑任意一个连续函数 f f f,其中 f ( x ) ≥ 0 f(x) \geq 0 f(x)0。此时, g ( x ) = ∫ a x f ( t )   d t g(x) = \int_{a}^{x} f(t) \, dt g(x)=axf(t)dt 可以被解释为从 a a a x x x f f f 图像下的面积,如图1所示。

为了从导数的定义中计算 g ′ ( x ) g'(x) g(x),我们首先注意到对于 h > 0 h > 0 h>0 g ( x + h ) − g ( x ) g(x + h) - g(x) g(x+h)g(x) 是通过减去面积得到的,因此它是从 x x x x + h x + h x+h f f f 图像下的面积(如图5中的蓝色区域)。对于较小的 h h h,可以从图中看出该面积近似等于一个高为 f ( x ) f(x) f(x)、宽为 h h h 的矩形的面积:

g ( x + h ) − g ( x ) ≈ h f ( x ) g ( x + h ) − g ( x ) h ≈ f ( x ) \begin{align*} g(x + h) - g(x) &\approx h f(x) \\ \frac{g(x + h) - g(x)}{h} &\approx f(x) \end{align*} g(x+h)g(x)hg(x+h)g(x)hf(x)f(x)

因此,直观上我们可以期望:

g ′ ( x ) = lim ⁡ h → 0 g ( x + h ) − g ( x ) h = f ( x ) g'(x) = \lim_{h \to 0} \frac{g(x + h) - g(x)}{h} = f(x) g(x)=h0limhg(x+h)g(x)=f(x)

即使当 f f f 不一定为正时,这依然成立,这就是微积分基本定理的第一部分。

微积分基本定理,第一部分

如果函数 f f f 在区间 [ a , b ] [a, b] [a,b] 上连续,那么由以下定义的函数 g g g
g ( x ) = ∫ a x f ( t )   d t 当  a ≤ x ≤ b g(x) = \int_{a}^{x} f(t) \, dt \quad \text{当} \ a \leq x \leq b g(x)=axf(t)dt axb
[ a , b ] [a, b] [a,b] 上连续,在 ( a , b ) (a, b) (a,b) 上可导,并且 g ′ ( x ) = f ( x ) g'(x) = f(x) g(x)=f(x)

我们将该定理简称为FTC1。通俗地说,这个定理表示,对于一个定积分,其上限的导数等于被积函数在上限处的值。

证明

如果 x x x x + h x + h x+h 位于 ( a , b ) (a, b) (a,b) 中,则

g ( x + h ) − g ( x ) = ∫ a x + h f ( t )   d t − ∫ a x f ( t )   d t = ( ∫ a x f ( t )   d t + ∫ x x + h f ( t )   d t ) − ∫ a x f ( t )   d t ( 由性质5 ) = ∫ x x + h f ( t )   d t \begin{align*} g(x + h) - g(x) &= \int_{a}^{x+h} f(t) \, dt - \int_{a}^{x} f(t) \, dt\\ &= \left( \int_{a}^{x} f(t) \, dt + \int_{x}^{x+h} f(t) \, dt \right) - \int_{a}^{x} f(t) \, dt \quad (\text{由性质5})\\ &= \int_{x}^{x+h} f(t) \, dt\\ \end{align*} g(x+h)g(x)=ax+hf(t)dtaxf(t)dt=(axf(t)dt+xx+hf(t)dt)axf(t)dt(由性质5)=xx+hf(t)dt

所以,对于 h ≠ 0 h \neq 0 h=0

g ( x + h ) − g ( x ) h = 1 h ∫ x x + h f ( t )   d t \frac{g(x + h) - g(x)}{h} = \frac{1}{h} \int_{x}^{x+h} f(t) \, dt hg(x+h)g(x)=h1xx+hf(t)dt

现在假设 h > 0 h > 0 h>0。由于 f f f [ x , x + h ] [x, x + h] [x,x+h] 上连续,根据极值定理,存在 u u u v v v 使得 f ( u ) = m f(u) = m f(u)=m f ( v ) = M f(v) = M f(v)=M,其中 m m m M M M 分别是 f f f [ x , x + h ] [x, x + h] [x,x+h] 上的最小值和最大值(参见图6)。
在这里插入图片描述

根据积分的性质8,我们有

m h ≤ ∫ x x + h f ( t )   d t ≤ M h mh \leq \int_{x}^{x+h} f(t) \, dt \leq Mh mhxx+hf(t)dtMh

也就是说,

f ( u ) h ≤ ∫ x x + h f ( t )   d t ≤ f ( v ) h f(u)h \leq \int_{x}^{x+h} f(t) \, dt \leq f(v)h f(u)hxx+hf(t)dtf(v)h

由于 h > 0 h > 0 h>0,我们可以将不等式除以 h h h

f ( u ) ≤ 1 h ∫ x x + h f ( t )   d t ≤ f ( v ) f(u) \leq \frac{1}{h} \int_{x}^{x+h} f(t) \, dt \leq f(v) f(u)h1xx+hf(t)dtf(v)

现在我们替换不等式中间部分:

f ( u ) ≤ g ( x + h ) − g ( x ) h ≤ f ( v ) f(u) \leq \frac{g(x + h) - g(x)}{h} \leq f(v) f(u)hg(x+h)g(x)f(v)

h → 0 h \to 0 h0 时, u → x u \to x ux v → x v \to x vx,因为 u u u v v v x x x x + h x + h x+h 之间。因此,

lim ⁡ h → 0 f ( u ) = lim ⁡ u → x f ( u ) = f ( x ) 且 lim ⁡ h → 0 f ( v ) = lim ⁡ v → x f ( v ) = f ( x ) \lim_{h \to 0} f(u) = \lim_{u \to x} f(u) = f(x) \quad \text{且} \quad \lim_{h \to 0} f(v) = \lim_{v \to x} f(v) = f(x) h0limf(u)=uxlimf(u)=f(x)h0limf(v)=vxlimf(v)=f(x)

因为 f f f x x x 处连续。我们从不等式和夹逼定理可以得出:

g ′ ( x ) = lim ⁡ h → 0 g ( x + h ) − g ( x ) h = f ( x ) g'(x) = \lim_{h \to 0} \frac{g(x + h) - g(x)}{h} = f(x) g(x)=h0limhg(x+h)g(x)=f(x)

如果 x = a x = a x=a b b b,那么公式4可以解释为单侧极限。然后定理2.2.4(针对单侧极限的修正)表明 g g g [ a , b ] [a, b] [a,b] 上是连续的。

使用莱布尼兹的导数记号,我们可以将FTC1写成:

d d x ∫ a x f ( t )   d t = f ( x ) \frac{d}{dx} \int_{a}^{x} f(t) \, dt = f(x) dxdaxf(t)dt=f(x)

f f f 连续时,大致来说,公式5表明如果我们先积分 f f f,然后再对结果求导数,我们将回到原函数 f f f

例2 求函数 g ( x ) = ∫ 0 x 1 + t 2   d t g(x) = \int_{0}^{x} \sqrt{1 + t^2} \, dt g(x)=0x1+t2 dt 的导数。

由于 f ( t ) = 1 + t 2 f(t) = \sqrt{1 + t^2} f(t)=1+t2 是连续的,依据微积分基本定理的第一部分,可得

g ′ ( x ) = 1 + x 2 g'(x) = \sqrt{1 + x^2} g(x)=1+x2

例3 尽管像 g ( x ) = ∫ a x f ( t )   d t g(x) = \int_{a}^{x} f(t) \, dt g(x)=axf(t)dt 这样的公式在定义一个函数时看起来有些奇怪,但物理学、化学和统计学书籍中充满了这样的函数。例如,Fresnel函数

S ( x ) = ∫ 0 x sin ⁡ ( π t 2 / 2 )   d t S(x) = \int_{0}^{x} \sin(\pi t^2 / 2) \, dt S(x)=0xsin(πt2/2)dt

是以法国物理学家奥古斯丁·菲涅尔(1788–1827)的名字命名的,他因在光学方面的工作而闻名。该函数最初出现在菲涅尔的光波衍射理论中,但近年来它已被应用于公路设计。

微积分基本定理的第一部分告诉我们如何对Fresnel函数求导:

S ′ ( x ) = sin ⁡ ( π x 2 / 2 ) S'(x) = \sin(\pi x^2 / 2) S(x)=sin(πx2/2)

这意味着我们可以应用所有微分计算的方法来分析 S S S(参见练习63)。

图7显示了函数 f ( x ) = sin ⁡ ( π x 2 / 2 ) f(x) = \sin(\pi x^2 / 2) f(x)=sin(πx2/2) 和 Fresnel函数 S ( x ) = ∫ 0 x f ( t )   d t S(x) = \int_{0}^{x} f(t) \, dt S(x)=0xf(t)dt 的图像。计算机通过计算此积分在许多 x x x 值下的值来绘制 S S S 的图像。确实看起来 S ( x ) S(x) S(x) 是函数 f f f 0 0 0 x x x 的图像下的面积(直到 x ≈ 1.4 x \approx 1.4 x1.4 S ( x ) S(x) S(x) 变为面积差)。图8显示了 S S S 图像的较大部分。
在这里插入图片描述
在这里插入图片描述

如果我们从图7中的 S S S 图像出发,并思考其导数应该是什么样子,那么当 f ( x ) > 0 f(x) > 0 f(x)>0 时, S ′ ( x ) S'(x) S(x) 是递增的,而当 f ( x ) < 0 f(x) < 0 f(x)<0 时, S ′ ( x ) S'(x) S(x) 是递减的。这就直观地确认了微积分基本定理的第一部分。

例4 求导数 d d x ∫ 1 x 4 sec ⁡ t   d t \frac{d}{dx} \int_{1}^{x^4} \sec t \, dt dxd1x4sectdt

这里我们需要小心地结合链式法则和微积分基本定理第一部分(FTC1)使用。令 u = x 4 u = x^4 u=x4。那么,

d d x ∫ 1 x 4 sec ⁡ t   d t = d d x ∫ 1 u sec ⁡ t   d t = d d u [ ∫ 1 u sec ⁡ t   d t ] ⋅ d u d x ( 由链式法则 ) = sec ⁡ u ⋅ d u d x ( 由FTC1 ) = sec ⁡ ( x 4 ) ⋅ 4 x 3 \begin{align*} \frac{d}{dx} \int_{1}^{x^4} \sec t \, dt &= \frac{d}{dx} \int_{1}^{u} \sec t \, dt\\ &= \frac{d}{du} \left[ \int_{1}^{u} \sec t \, dt \right] \cdot \frac{du}{dx} \quad (\text{由链式法则}) \\ &= \sec u \cdot \frac{du}{dx} \quad (\text{由FTC1})\\ &= \sec(x^4) \cdot 4x^3\\ \end{align*} dxd1x4sectdt=dxd1usectdt=dud[1usectdt]dxdu(由链式法则)=secudxdu(FTC1)=sec(x4)4x3

在第4.2节中,我们通过求黎曼和的极限来计算积分,并发现这个过程有时很漫长且复杂。微积分基本定理的第二部分很容易从第一部分推导出来,为我们提供了一种更简单的积分计算方法。

微积分基本定理,第二部分

如果 f f f [ a , b ] [a, b] [a,b] 上连续,那么
∫ a b f ( x )   d x = F ( b ) − F ( a ) \int_{a}^{b} f(x) \, dx = F(b) - F(a) abf(x)dx=F(b)F(a)
其中 F F F f f f 的一个反导函数,也就是说, F ′ = f F' = f F=f

证明

g ( x ) = ∫ a x f ( t )   d t g(x) = \int_{a}^{x} f(t) \, dt g(x)=axf(t)dt。根据基本定理第一部分,我们知道 g ′ ( x ) = f ( x ) g'(x) = f(x) g(x)=f(x),即 g g g f f f 的一个反导函数。如果 F F F f f f [ a , b ] [a, b] [a,b] 上的任意一个反导函数,那么根据推论3.2.7,我们知道 F F F g g g 之间只差一个常数:

F ( x ) = g ( x ) + C 对于  a < x < b F(x) = g(x) + C \quad \text{对于} \ a < x < b F(x)=g(x)+C对于 a<x<b

F F F g g g 都在 [ a , b ] [a, b] [a,b] 上是连续的,因此取 x → a + x \to a^+ xa+ x → b − x \to b^- xb 的极限,我们看到当 x = a x = a x=a x = b x = b x=b 时,上述关系仍然成立。所以在 [ a , b ] [a, b] [a,b] 上的所有 x x x 都有 F ( x ) = g ( x ) + C F(x) = g(x) + C F(x)=g(x)+C

如果我们将 x = a x = a x=a 代入 g ( x ) g(x) g(x) 的公式,我们得到:

g ( a ) = ∫ a a f ( t )   d t = 0 g(a) = \int_{a}^{a} f(t) \, dt = 0 g(a)=aaf(t)dt=0

因此,利用等式6,并令 x = b x = b x=b x = a x = a x=a,我们有:

F ( b ) − F ( a ) = [ g ( b ) + C ] − [ g ( a ) + C ] = g ( b ) − g ( a ) = g ( b ) = ∫ a b f ( t )   d t \begin{align*} F(b) - F(a) &= [g(b) + C] - [g(a) + C]\\ &= g(b) - g(a) = g(b) = \int_{a}^{b} f(t) \, dt \end{align*} F(b)F(a)=[g(b)+C][g(a)+C]=g(b)g(a)=g(b)=abf(t)dt

微积分基本定理的第二部分表明,如果我们知道 f f f 的一个反导函数 F F F,那么我们可以通过在区间 [ a , b ] [a, b] [a,b] 的端点处计算 F F F 的值,然后将它们相减来评估 ∫ a b f ( x )   d x \int_{a}^{b} f(x) \, dx abf(x)dx。令人惊讶的是,原本需要通过复杂的计算过程涉及 a ≤ x ≤ b a \leq x \leq b axb 上所有 f ( x ) f(x) f(x) 值的积分,居然可以通过仅知道两个点 a a a b b b F F F 的值来计算。

虽然这个定理乍一看很令人惊讶,但如果从物理的角度来解释,它就变得很合理。如果 v ( t ) v(t) v(t) 是物体的速度, s ( t ) s(t) s(t) 是物体在时刻 t t t 的位置,那么 v ( t ) = s ′ ( t ) v(t) = s'(t) v(t)=s(t),所以 s s s v v v 的一个反导函数。在第4.1节中,我们考虑了一个始终向正方向运动的物体,并假设速度曲线下的面积等于物体行进的距离。用符号表示:

∫ a b v ( t )   d t = s ( b ) − s ( a ) \int_{a}^{b} v(t) \, dt = s(b) - s(a) abv(t)dt=s(b)s(a)

这正是FTC2在这个背景下所表达的内容。

例5 计算积分 ∫ − 2 1 x 3   d x \int_{-2}^{1} x^3 \, dx 21x3dx

函数 f ( x ) = x 3 f(x) = x^3 f(x)=x3 [ − 2 , 1 ] [-2, 1] [2,1] 上是连续的,并且我们从第3.9节知道它的一个反导函数是 F ( x ) = 1 4 x 4 F(x) = \frac{1}{4}x^4 F(x)=41x4,所以根据微积分基本定理第二部分,我们有:

∫ − 2 1 x 3   d x = F ( 1 ) − F ( − 2 ) = 1 4 ( 1 ) 4 − 1 4 ( − 2 ) 4 = − 15 4 \int_{-2}^{1} x^3 \, dx = F(1) - F(-2) = \frac{1}{4}(1)^4 - \frac{1}{4}(-2)^4 = -\frac{15}{4} 21x3dx=F(1)F(2)=41(1)441(2)4=415

注意,微积分基本定理第二部分表明我们可以使用 f f f 的任何一个反导函数。所以我们不妨使用最简单的一个,即 F ( x ) = 1 4 x 4 F(x) = \frac{1}{4}x^4 F(x)=41x4,而不是 1 4 x 4 + 7 \frac{1}{4}x^4 + 7 41x4+7 1 4 x 4 + C \frac{1}{4}x^4 + C 41x4+C

我们通常使用符号:

F ( x ) ∣ a b = F ( b ) − F ( a ) F(x) \bigg|_{a}^{b} = F(b) - F(a) F(x) ab=F(b)F(a)

因此,微积分基本定理第二部分的公式可以写成:

∫ a b f ( x )   d x = F ( x ) ∣ a b 其中  F ′ = f \int_{a}^{b} f(x) \, dx = F(x) \bigg|_{a}^{b} \quad \text{其中} \ F' = f abf(x)dx=F(x) ab其中 F=f

其他常见的记号还有 F ( x ) ∣ a b F(x) \bigg|_{a}^{b} F(x) ab [ F ( x ) ] a b [F(x)]_{a}^{b} [F(x)]ab

例6 求抛物线 y = x 2 y = x^2 y=x2 x x x 0 0 0 1 1 1 之间的面积。

函数 f ( x ) = x 2 f(x) = x^2 f(x)=x2 的一个反导函数是 F ( x ) = 1 3 x 3 F(x) = \frac{1}{3}x^3 F(x)=31x3。所需的面积 A A A 可以通过微积分基本定理的第二部分求得:

A = ∫ 0 1 x 2   d x = x 3 3 ∣ 0 1 = 1 3 3 − 0 3 3 = 1 3 A = \int_{0}^{1} x^2 \, dx = \left. \frac{x^3}{3} \right|_{0}^{1} = \frac{1^3}{3} - \frac{0^3}{3} = \frac{1}{3} A=01x2dx=3x3 01=313303=31

如果你将例6中的计算与例4.1.2中的计算进行比较,你会发现微积分基本定理提供了一个更简洁的方法。

例7 求从 0 0 0 b b b (其中 0 ≤ b ≤ π 2 0 \leq b \leq \frac{\pi}{2} 0b2π)之间的余弦曲线下的面积。

因为 f ( x ) = cos ⁡ x f(x) = \cos x f(x)=cosx 的一个反导函数是 F ( x ) = sin ⁡ x F(x) = \sin x F(x)=sinx,我们有

A = ∫ 0 b cos ⁡ x   d x = sin ⁡ x ∣ 0 b = sin ⁡ b − sin ⁡ 0 = sin ⁡ b A = \int_{0}^{b} \cos x \, dx = \left. \sin x \right|_{0}^{b} = \sin b - \sin 0 = \sin b A=0bcosxdx=sinx0b=sinbsin0=sinb

特别地,当取 b = π 2 b = \frac{\pi}{2} b=2π 时,我们证明了从 0 0 0 π 2 \frac{\pi}{2} 2π 的余弦曲线下的面积是 sin ⁡ ( π 2 ) = 1 \sin \left(\frac{\pi}{2}\right) = 1 sin(2π)=1。(参见图9。)
在这里插入图片描述
1635年,当法国数学家吉勒斯·德·罗贝瓦尔(Gilles de Roberval)首次求出正弦和余弦曲线下的面积时,这是一个非常具有挑战性的问题,需要极大的创造力。如果我们没有微积分基本定理的帮助,我们将不得不使用晦涩的三角恒等式(或像在练习4.1.31中那样借助计算机代数系统)来计算求和的极限。对于罗贝瓦尔来说,这个问题甚至更加困难,因为1635年还没有发明极限的概念。但是在1660年代和1670年代,当巴罗(Barrow)发现并且牛顿和莱布尼茨利用微积分基本定理时,这类问题就变得非常简单了,正如你从例7中看到的那样。

例8 以下计算有什么问题?

∫ − 1 3 1 x 2   d x = − 1 x ∣ − 1 3 = − 1 3 − 1 = − 4 3 \int_{-1}^{3} \frac{1}{x^2} \, dx = \left. \frac{-1}{x} \right|_{-1}^{3} = -\frac{1}{3} - 1 = -\frac{4}{3} 13x21dx=x1 13=311=34

首先,我们注意到这个计算是错误的,因为结果是负数,但 f ( x ) = 1 x 2 ≥ 0 f(x) = \frac{1}{x^2} \geq 0 f(x)=x210,而积分性质6表明当 f ≥ 0 f \geq 0 f0 时, ∫ a b f ( x )   d x ≥ 0 \int_{a}^{b} f(x) \, dx \geq 0 abf(x)dx0。微积分基本定理适用于连续函数,但这里不能应用,因为 f ( x ) = 1 x 2 f(x) = \frac{1}{x^2} f(x)=x21 [ − 1 , 3 ] [-1, 3] [1,3] 上不连续。实际上, f f f x = 0 x = 0 x=0 处有无限间断点,因此

∫ − 1 3 1 x 2   d x \int_{-1}^{3} \frac{1}{x^2} \, dx 13x21dx

不存在。

微分和积分作为逆过程

我们以结合微积分基本定理的两个部分来结束本节。

微积分基本定理

假设 f f f [ a , b ] [a, b] [a,b] 上连续。

  1. 如果 g ( x ) = ∫ a x f ( t )   d t g(x) = \int_{a}^{x} f(t) \, dt g(x)=axf(t)dt,则 g ′ ( x ) = f ( x ) g'(x) = f(x) g(x)=f(x)
  2. ∫ a b f ( x )   d x = F ( b ) − F ( a ) \int_{a}^{b} f(x) \, dx = F(b) - F(a) abf(x)dx=F(b)F(a),其中 F F F f f f 的一个反导函数,即 F ′ = f F' = f F=f

我们注意到基本定理的第一部分可以重写为:

d d x ( ∫ a x f ( t )   d t ) = f ( x ) \frac{d}{dx} \left( \int_{a}^{x} f(t) \, dt \right) = f(x) dxd(axf(t)dt)=f(x)

这表明,如果我们对 f f f 进行积分,然后对结果求导数,我们会回到原函数 f f f。由于 F ′ ( x ) = f ( x ) F'(x) = f(x) F(x)=f(x),第二部分可以重写为:

∫ a b F ′ ( x )   d x = F ( b ) − F ( a ) \int_{a}^{b} F'(x) \, dx = F(b) - F(a) abF(x)dx=F(b)F(a)

这个形式表明,如果我们先对函数 F F F 求导数,然后对结果进行积分,我们会回到原函数 F F F,但以 F ( b ) − F ( a ) F(b) - F(a) F(b)F(a) 的形式出现。结合起来,微积分基本定理的两个部分表明微分和积分是互为逆过程。一个撤销另一个的作用。

微积分基本定理无疑是微积分中最重要的定理之一,实际上,它被认为是人类智慧的伟大成就之一。在它被发现之前,从欧多克索斯和阿基米德的时代到伽利略和费马的时代,求面积、体积和曲线长度的问题都是非常困难的,只有天才才能应对这些挑战。但是现在,随着牛顿和莱布尼茨系统化发展出的微积分基本定理,我们将在后续章节中看到,这些挑战性的问题对所有人来说都变得易于理解。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值