目录
一、低代码的演进
数字化转型1.0:传统软件
在数字经济迅速发展的背景下,越来越多的企业开始健全业务应用,用数字化工具对数据流、业务流、管理流等进行管理,从而提高管理效率,驱动业务创新,重构商业生态,促进企业增长,实现数字化转型。但在其建设过程中,仍然存在诸多问题。
传统开发模式下,存在以下问题:
-
传统数字化应用开发流程复杂、周期长,难以敏捷响应业务需求:经过多年的信息化发展,大部分企业已经搭建了 ERP、 CRM、 MES 等主流业务系统,但随着数字化转型的需求越来越多,传统业务系统的功能已经不能满足企业多样化的需求,企业只能通过定制化开发业务应用来实现个性化需求,但定制化开发成本高、周期长的问题长期困扰着企业。传统的瀑布式开发流程分为需求分析、软件设计、开发、测试、部署以及维护六个环节,开发人员需要撰写大量的设计文档,编写大量的源代码,并对开发出来的应用进行测试和修复,工作任务繁重且效率较低。系统上线后,随着业务的发展,企业在流程管理、数据可视化等方面的需求增多,开发人员又需按同样的流程进行二次开发,流程复杂且耗时长,使得应用开发速率难以满足需求迭代速率,进而导致系统功能与业务脱节,利用率低。
-
传统开发模式下,IT部门和业务部门合作困难:开始软件设计前,业务人员需要提交需求规格说明书,但由于其多没有技术基础,与 IT 人员的话语体系差异较大,往往需要与开发人员进行反复沟通进行说明书修改,协作效率低。且双方的逻辑思维与工作习惯迥异,若没有充分理解业务需求,开发出来的系统可能不符合业务人员的工作习惯,操作复杂,需要花费大量的时间进行操作培训,业务人员也会产生抵触情绪,从而导致系统落地困难。
数字化转型2.0:低代码
低代码平台是一种允许非专业人员通过图形化界面和少量代码快速开发应用程序的工具,可以降低软件开发的门槛,提高开发效率,促进业务与技术的深度融合。低代码平台通过封装大量预定义的组件和模板,使得开发者能够更加专注于业务逻辑的实现,而非底层技术的细节。
低代码平台主要旨在解决传统软件开发过程中的挑战和问题,包括:
-
加快应用开发速度:传统软件开发往往需要大量的手动编码和复杂的开发流程,耗费时间和人力资源。低代码平台通过可视化开发和组件化设计,大大缩短了开发周期,加快了应用的上线速度。
-
降低开发成本:传统开发需要雇佣熟练的开发人员和专业的团队来完成,成本较高。低代码平台使得开发过程更为简单,甚至可以由非专业开发人员参与,从而降低了开发和维护的成本。
-
促进业务和IT之间的协作:低代码平台提供了更直观的开发环境和可视化工具,使得业务人员和非技术人员也能参与应用开发过程。这促进了业务部门与IT部门之间更紧密的协作和沟通,加快了需求到应用的转化速度。
-
加强数字化转型和创新:低代码平台为企业提供了快速开发和部署应用的能力,加速了数字化转型的进程。它也鼓励了创新,让开发团队可以更专注于业务逻辑和用户体验的优化,而非繁琐的技术实现细节。
二、低代码的困境
随着低代码的不断发展,平台的功能日益丰富,在引入领域化概念的同时,不断新增大量组件和页面模板。然而,这也带来了新的问题:用户的使用门槛逐步提高。随着业务的持续增长,平台的疲态也变得越来越明显:难以应对复杂的表单需求、平台代码难以维护,糟糕的性能问题也在影响企业的数字化转型进程。
低代码在其发展的生命周期,存在以下特征:
-
前期:平台能力弱,但业务也简单。平台开始起步
-
中期:平台能力趋于成熟,业务逐渐变得复杂但仍在平台能力范围之内。平台支撑着业务快速发展
-
后期:平台触达能力上限,部分业务需求开始超出平台能力
平台之所以会有如此表现,根本症结在于其发展受到了“低代码”天然自带的一组矛盾的掣肘,该矛盾可以用不可能三角的形式加以描述:
-
Easy to Use - 易于使用
-
Powerful - (功能)强大
-
Low Complexity -低(系统)复杂度
三个目标形成了如此一个三角形的结构,意味着在同一低代码平台上,他们永远不可能同时被满足。若一平台在易于使用的同时功能强大,则必然拥有较高的系统复杂度。其中,系统复杂度与维护成本成正比,与系统性能成反比。即意味着较高的系统复杂度最终会导致平台拥有较高的维护成本以及较低的系统性能。
三、低代码与AI的场景整合
围绕低代码平台现存的问题,人工智能的出现为低代码平台困境提供了新的思路。平台可以设计 Agent,让用户能够通过简单的一行文字描述或甚至一张图片,获取解决方案,设置快速创建可用的应用程序,帮助用户快速上手代码产品,从而降低低代码平台的使用门槛。
场景一:应用推荐更准确
-
场景分析:应用模版中心提供了大量的行业解决方案,每个行业解决方案围绕着实际业务问题出发。管理员在选择应用模版时,因为不确定应用模版的搭建内容,往往需要投入大量的时间和精力安装应用模版、使用应用,从而确认应用是否符合业务诉求。人工智能可以通过对话理解管理员的业务诉求,从应用模版库中筛选最合适的解决方案推荐给管理员,从而降低管理员的时间投入。
-
目标:通过人工智能对用户的业务进行分析,推荐合适的应用模版
场景二:应用搭建更智能
-
场景分析:对于应用搭建者而言,人工智能可以帮助应用搭建者规避应用搭建中的误区,使用合理、高效的方案完成应用的搭建。人工智能不仅能够独立应付大量的平台使用相关的咨询,也能自动搜集出高频问题和使用问题提供给应用搭建者。
-
目标:通过人工智能对用户搭建应用遇到的问题进行分析,提供合理的实施解决方案
场景三:应用生成更简单
-
场景分析:低代码平台不断发展,平台的功能日益丰富,在引入大量的领域化概念的同时,用户使用门槛逐步提高,影响应用搭建者的实施。人工智能可以借助低代码平台在发展过程中沉淀的学习语料,比如帮助文档、案例、模版、DSL、公式语法等,通过自然语言对话实现自动生成应用、表单、流程、页面、报表等,让搭建应用的门槛降低。
-
目标:通过人工智能对用户的需求进行分析,完成应用的搭建
场景四:应用分析更便捷
-
场景分析:低代码平台可以通过报表模块呈现应用数据的分析。应用搭建者根据企业管理者的要求,完成数据报表的搭建。然而在决策过程中,企业管理者常常会临时要求补充更多报表数据进行分析,此时应用搭建者需要迅速响应并完成相应的搭建工作。借助人工智能技术,可以通过分析应用模型和数据,自动生成图表信息,从而更快满足企业管理者的需求。
-
目标:通过人工智能对用户的需求进行分析,完成报表页面的生成
四、总结
在AIGC时代,低代码与AI的深度融合正以前所未有的方式重塑软件开发行业。通过充分发挥低代码和AI的强大优势,我们不仅能够显著提升开发效率,大幅降低技术门槛,还能极大增强应用功能,推动各行各业的数字化转型。展望未来,随着技术的飞速进步和应用场景的不断拓展,低代码与AI的完美结合必将引领软件开发领域的新潮流,成为行业的主流趋势。
七巧低代码是以业务应用搭建为核心的aPaaS低代码应用平台,为客户提供aPaaS+iPaaS的全民数智化解决方案。