一、前言
过去几年,大模型(LLM)几乎成了AI的代名词,从ChatGPT 到 Qwen、Claude,再到火出圈的DeepSeek,每一个新模型的发布都伴随着参数量的飞涨,百亿、千亿、万亿模型层出不穷。
但很多开发者会有一个直观感受:
“模型越来越大了,参数越来越多了,但为什么用起来仍然感觉它还不够聪明?”
能对对联,能写诗,但是对于一个简单的“9.11和9.8哪个大”都搞错。
能上知天文,下知地理,但是仍可能会前言不搭后语。
那么问题出在哪?
二、🧠模型“大” ≠ 真“聪明”
首先我们得先达成共识:“大”不是聪明的代名词。
“大”是指模型参数量大、训练语料多、计算资源多,这更多是模型能力上限以及当下技术的产物。但是否聪明,取决于能否用好这份能力。
想象下:
-
一个受过义务教育+高等教育的人,如果知识组织混乱和思维方式粗糙,你会觉得他聪明吗?
-
一个看了所有编程书但是不会解决实际问题的新人,只会背概念,你会让他面试通过吗?
大模型面临的问题,也大概这样。
三、大模型不够聪明的几个原因
1. 训练目标决定了它只是个“预测机器”