基于yolov5的工业缺陷检测方案

本文介绍了基于yolov5的工业缺陷检测方案,通过离线切图处理大尺寸图像,实现训练和预测的高效。在瓷砖瑕疵检测比赛中,采用yolov5l模型,经过30个epoch的训练,在单卡RTX 2070s上进行640x640滑动窗口预测,平均一张图耗时不到3秒,取得了较好的线上排名。文章探讨了切图策略、训练验证和预测优化,强调了yolov5在速度与精度平衡上的优势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

↑↑↑关注后"星标"Datawhale

每日干货 & 每月组队学习,不错过

 Datawhale干货 

作者:limzero,西安交通大学,Datawhale原创作者

比赛介绍

工业缺陷检测是当前深度学习落地的热门项目,其中瓷砖生产过程中的“质量检测环节”需要检测出瓷砖表面的瑕疵,目前比较依赖于人工,效果和效率都层次不齐。

最近天池上线的广东工业赛事针对瓷砖表面瑕疵进行智能检测,要求选手们相应的算法,尽可能快与准确的给出瓷砖疵点具体的位置和类别,主要考察疵点的定位和分类能力。

在本篇文章中,主要为大家介绍选择yolov5作为基线的方案,供大家参考。

基于yolov5的方案

线上结果:

  • 切成 640x640 滑动窗口预测,耗时<1.5 h, 平均一张图<3s! 线上

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值