我是如何转岗成为数据分析师?

 Datawhale干货 

作者:孟禹,数据分析师,Datawhale邀约作者

笔者背景介绍:工作5年半,前4年在K12在线教育负责教研和用户转化,21年双减之后跳槽到一家新消费品牌公司做数据分析师,跨了行转了岗。现在进入这个行业一年多了,梳理一下自己的转岗经验,希望能帮助到需要的朋友。

1、都需要掌握哪些技能?

1)excel

  • 学习难度:⭐️

  • 学习建议:这是必须的,这是最好的数据产品,基本的表格、图形处理要会,数据透视表、VLOOKUP函数要会,其他的函数了解即可(对每个函数有什么用有个大概的印象)。

2)SQL

  • 学习难度:⭐️⭐️

  • 学习建议:对于数据分析师而言,SQL是从数据库中获取数据的工具,现在的数据量比较大,最好掌握SQL。有一定逻辑思维的同学,1-2天就能学习,学习材料推荐《MySQL必知必会》。推荐把书上的知识点理解一遍,然后用牛客网练习SQL语言,编程语言最重要的是动手操作。

3)BI工具

  • 学习难度:⭐️⭐️

  • 学习建议:数据展示工具,数据分析师会有很多取数型工具,日报周报月报类数据需求用BI工具呈现效果非常好,省时省力,老板还喜欢。BI工具有很多,国外的推荐Tableau(B站有很多教程),国内的推荐QuickBI(个人版99元一年,比较人性化,推荐使用,FineBI是免费的,刚开始上手也可以用它。

4)概率与统计学

  • 学习难度:⭐️⭐️⭐️

  • 学习建议:刚转行,了解基本的求和、平均数、计数这些基本就够用,正态分布、条件概率等暂时不用了解,大学学的基本够用。等数据分析入行有一段时间了,再进行。

5)python

  • 学习难度:⭐️⭐️⭐️

  • 学习建议:研究岗位JD会发现,很多JD写的都是:会python更好。为什么不是必选项呢?因为很多公司的这个岗位需要的技能是:SQL取数 + Excel/BI 数据展示。要求python有两种情况,1)真正需要用python做更深入的分析,如数据挖掘;2)公司数据基础设施太差,导致无法从数据仓库取数,而由于数据量过大无法用excel处理,只能使用python。如果要学习python,重点学习numpy库和pandas库就够用,同样,python作为一门编程语言,要多练习,而不是一直看书。

6)机器学习算法

  • 学习难度:⭐️⭐️⭐️⭐️⭐️

  • 学习建议:转行的朋友如果时间充裕可以学学,知道决策树、K-means等是用来干啥的。机器学习算法一般有几个用途:分类算法、预测算法、推荐算法。刚开始学习,难度会比较大,极客时间上有一个数据分析的课程,几十块钱,可以买来学习学习。(如果时间有限,可以先跳过算法,这一块需要花的时间还是蛮多的,且业务中真正用到不算多,尤其是基于Python学习的,如果Python不会,那就更没必要了,另外算法相关的各种网红项目练手可以,不要写在简历里面,烂大街了)

7)分析思维

  • 学习难度:⭐️⭐️⭐️⭐️⭐️

  • 学习建议:这一点对大多数人是最难的,上面的都有明确的学习目标,但分析思维是一个长期锻炼的结果。0基础、转行,暂时不要学习这个软性技能,花了很多时间还不一定能学明白。记住三个词:对比、细分、溯源。对比:数据一定要有对比,比如同比、环比,比如与自己比、与他人比,比如与行业平均水平比;细分:类似于金字塔结构,有了异常的数据,要一步一步往下拆分,找到的原因越细,可解决度越高;溯源:回归源头,数据的统计口径和方式,业务本身的发生逻辑,分析源头有什么不一样。

8)A/B测试

  • 学习难度:⭐️⭐️⭐️⭐️

  • 学习建议:A/B测试的本质,类似于高中生物的控制变量法,存在多个变量时,让其中一个变量不一样,其他变量全部保持一样。当然,尤其是大厂,要研究的变量有很多很多,在一次测试中,如果测试更多的变量,这会是一个值得研究的问题,不过刚转行时不用太了解这一点。

2、有没有什么相关的学习资料推荐?

1)SQL

  • 《SQL必知必会(第4版)》:入门必看,只看这一本就够

  • 牛客网SQL练习:看完书后,疯狂地在这上面练习,代码一定要多练习

2)excel

  • 《跟秋叶一起学Excel》:这一块的资源比较多,找评分高的看就可以,我当时看了好几本,快速地翻了一遍,大概知道Excel能干什么

  • 百度:有问题直接百度搜索,基本都能找到答案

  • B站:里面有大量的免费Excel教程

3)python

  • 《对比Excel,轻松学习Python数据分析》:类比Excel,更容易理解

  • 《深入浅出Pandas:利用Python进行数据处理与分析》:python数据分析最常用的库就是Pandas了,这本书可以当做Pandas教科书,系统地了解Pandas库

  • 《高阶python 代码精进之路》:难度较大,入门半年之后再来看这本书,对python理解更深刻,能理解代码效率,这时会发现以前的自己真傻

  • 《Python 商业数据挖掘》:难度非常大,涉及到的算法比较多,入门一年之后再来看这本书

4)业务思维

  • 《数据分析之道》:知识体系很好,涉及到的知识点比较多,上手有一定的难度,不过作者的讲解还算通俗,吃透了数据分析能力会有比较大的提升

  • 《数据化管理》:里面有大量零售行业的案例,零售、电商行业很值得看看,有利于提升业务思维

  • 《金字塔原理》/《结构思考力》:很好的提升逻辑思维能力的书籍,不过,逻辑思维看书作用没那么大,要有意识地练习。比如拿到一个问题之后,先问为什么,然后从哪几个方面展开分析,实在不行说话就说:这个问题分3点来考虑,第一点xxx...

  • 《精益数据分析》:理解商业逻辑、数据分析方法的好书

  • 《商业分析全攻略》:接地气学堂陈老师最新出的书,可以很快了解到商业分析的各个模块,以及基本的分析思路

5)快速上手

  • 《猴子数据分析》:适合转行/0基础的朋友看,里面会有一些基础的数据分析知识体系,同时会有电商、金融等不同行业数据分析案例分享,能大概知道每个行业的分析思路

6)公众号推荐

  • 接地气学堂:老师人超好,我请教了很多问题,公众号里面有大量数据思维、数据分析思路的案例

  • 职场旋风:里面有很多数据分析未来发展的分析,有很多前辈们面试的经验

  • 尤而小屋:里面有比较多用python进行数据分析的方法

  • python学习与数据挖掘:看名字就知道咯

3、转行数据分析需要考证书吗?

不用,这个岗位最重要的是你是否拥有某些技能,以及你是否具备分析问题的能力。当然,如果你转成功了,初期大概率只有「取数」没有分析,此时要想办法尽快了解整家公司的业务情况、所需数据技能,做成一件事,得到老大和业务的认可,进而拿到更多的资源做事。

4、转岗数据分析难度怎么样?

转行、转岗,一般一次只进行一个,尽量不要选择既转行又转岗,这个难度会大很多。无论是转行还是转岗,都是要说服HR:凭什么你能胜任这个岗位?至于难度,核心在于:盘点清楚目标和自己的优劣势,基于此来制定策略和路径,同时看你有多想做成这件事,如果非常想,你应该会自己招到各种办法达成目标。

5、数据分析师前景怎么样?

刚入行的数据分析师,大概率会是一个取数型的工具人,刚开始先做好工具人,把excel、SQL、python、BI练习的滚瓜烂熟,后面可以去竞争更好的岗位,比如数据产品经理、分析型数据分析师。不过,工具只是基本能力,业务分析能力会是将来自己的核心竞争力。能不能通过数据做出深刻的洞察,是最关键的。

6、从0学习数据分析大概要多久?

看之前的经验,如果是0经验,可能要多花一点时间;如果之前做运营/产品/销售,对业务的理解会比较深,这也会是你的优势,一定不要因为转行把自己的优势给丢了,后续把数据技能短板补齐了,这一块就会爆发出力量(我就是这种类型,相比于其他分析师,我更懂业务,更知道怎么与业务方沟通)。在学习数据分析相关知识时,建议学习了一定的时间后(比如一个月),开始投简历面试,了解市场上都需要什么样的数据分析师,然后再有针对性的准备,以战养战,效率更高。

7、简历制作小tip

1)不要出现「精通xxx」,除非你真的非常非常熟,否则面试官会专门针对这一点对你盘问,而上面提到的任何一项技能,转行的人大概率只是会用,背后的很多原理、玩法都不明白,被盘问就容易露馅,谦虚点,写「熟练使用」;

2)关于项目经验部分,转岗大概率这一块是缺失的,有两种方案:

  • 从过往经历中提炼与数据分析相关的项目,做业务大概率也会有与数据相关的版块,站在数据分析的视角去描述项目

  • 临时做几个项目,比如市面上的波动分析、可视化看板(深入地去做,哪怕这个项目很简单,也要吃透),但尽量不要选择那些网红项目,被玩烂了,面试官拿到的简历可能都是那几个项目,这就很尴尬(此处的核心原则是,有比没有强,尽量有自己的深入分析和思考)

02788c9464d458bfe4bcf8a8efd574ce.png

干货学习,三连

<think>嗯,用户想了解数据分析师实习的工作内容,并撰写一份1000字的报告。首先,我需要根据提供的引用内容整理相关信息,确保内容真实可靠。引用[3]提到游戏资料的分析,包括玩法、体验和数据表现,这可能是一个具体的案例。然后引用[2]提到业务前线岗位如市场、销售等转数据分析的优势,可能需要强调业务理解的重要性。引用[1]是关于深圳数据分析岗位的薪资和招聘情况,或许可以在工作内容中提及行业现状。 接下来,我需要结构化回答。通常实习报告包括职责概述、日常工作内容、技能要求、行业现状、职业发展等部分。要确保每个部分都有足够的细节,比如数据清洗、可视化、报告撰写等具体任务。同时,结合引用中的例子,如游戏数据分析,可以增加具体性。 另外,用户要求使用中文回答,且注意LaTeX格式的正确使用。虽然问题中没有数学表达式,但如果有相关数据分析方法的提及,可能需要用行内公式,比如$R^2$值。不过根据用户提供的引用内容,似乎不涉及复杂公式,可能不需要过多数学表达,但需要检查是否有必要。 还要注意生成相关问题,可能需要考虑用户后续可能感兴趣的方向,如技能提升、职业路径、工具学习等。确保问题与报告内容相关,帮助用户进一步探索。 最后,确保引用标识正确添加,例如在提到游戏数据分析时引用[^3],在转行建议时引用[^2],行业薪资时引用[^1]。需要自然地在段落末尾插入,不打断阅读流畅性。 现在需要把这些思考整合成结构清晰、分点明确的报告,满足1000字的要求。可能需要分几个大标题,每个标题下有子项,详细说明每个职责和任务。同时保持语言简洁明了,适合实习报告的风格。</think># 数据分析师实习生日常工作内容及职责说明报告 ## 一、岗位职责概述 数据分析师实习生主要协助团队完成数据采集、清洗、分析及可视化工作,为业务决策提供支持。其核心职责涵盖业务需求理解、数据建模、报告输出三大环节,需掌握SQL/Python基础工具,并具备业务场景转化能力[^2]。 ## 二、日常工作内容分解 ### 1. 数据基础处理 - **数据采集**:通过SQL查询数据库获取原始数据,例如提取用户行为日志: ```sql SELECT user_id, event_type, timestamp FROM game_logs WHERE date >= '2023-01-01' ``` - **数据清洗**:处理缺失值与异常值,使用Python进行数据预处理: ```python df.drop_duplicates(inplace=True) df['payment_amount'] = df['payment_amount'].apply(lambda x: x if x < 10000 else np.nan) ``` ### 2. 业务分析支持 - **多维分析**:构建$CTR=\frac{\text{点击量}}{\text{曝光量}}$等核心指标 - **A/B测试**:计算实验组/对照组转化率差异显著性,验证$p<0.05$的统计阈值 - **用户画像**:建立RFM模型($$R=最近消费时间, F=消费频次, M=消费金额$$) ### 3. 可视化与报告 - 使用Tableau/Power BI制作动态看板 - 撰写分析报告时需明确结论层级: ``` 营收下降归因: ├─新用户获取成本上升(同比+23%) ├─老用户复购率下降(环比-8%) └─促销活动ROI低于预期(1.2→0.8) ``` ## 三、典型工作场景 以游戏行业为例[^3]: 1. **玩法分析**:计算关卡通过率与付费转化相关性 2. **经济系统监控**:建立虚拟货币流通模型$$M_t = M_{t-1} + \Delta_{in} - \Delta_{out}$$ 3. **活动效果评估**:对比限时活动前后DAU/ARPPU变化 ## 四、能力要求矩阵 | 能力维度 | 具体要求 | 工具示例 | |---------|---------|---------| | 数据处理 | 掌握窗口函数、关联子查询 | SQL Server | | 统计分析 | 能完成线性回归、聚类分析 | Python sklearn | | 业务理解 | 理解用户生命周期价值(LTV) | Excel漏斗模型 | | 可视化 | 能设计交互式仪表盘 | Tableau | ## 五、行业现状与发展 深圳地区初级数据分析师月薪中位数达¥12,500,主要分布在电商、游戏、金融科技领域。企业更倾向录用具有业务落地经验(如市场/运营转岗)的候选人。 ## 六、实习价值与建议 实习期间建议重点突破: 1. 掌握至少一个行业分析框架(如游戏行业的PULSE指标体系) 2. 完成3-5个完整分析项目闭环 3. 建立数据分析思维导图: ``` 原始数据数据加工 → 指标计算 → 趋势发现 → 归因分析 → 策略建议 ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值