Datawhale干货
作者:崔腾松,Datawhale成员
前言

Meta 开源万物可分割 AI 模型:segment anything model (SAM)。
本文列举了一些资料,并从SAM的功能介绍、数据集、数据标注、图像分割方法介绍,研发思路以及对未来的展望来展开详细介绍。并综合了一些评价谈论,放眼当下和展望未来,给出了一些个人的想法和看法。
资料
论文地址1:https://arxiv.org/abs/2304.02643
论文地址2:https://ai.facebook.com/research/publications/segment-anything/
项目地址:https://github.com/facebookresearch/segment-anything
Demo 地址:https://segment-anything.com/
SA-1B数据集:https://ai.facebook.com/datasets/segment-anything/
参考链接:https://ai.facebook.com/blog/segment-anything-foundation-model-image-segmentation/
论文翻译:https://emoumcwvfx.feishu.cn/docx/D971dWcuMoyMJUxE1Mfc1fwPn7c
浅谈 segment-anything
展望未来
Meta 在论文中发布的新模型名叫 Segment Anything Model (SAM) 。
如标题所述,这篇论文只做了一件事情:(零样本)分割一切。类似 GPT-4 已经做到的「回答一切」。
将 NLP 的 prompt 范式引入了 CV 领域,进而为 CV 基础模型提供更广泛的支持与深度研究。
SAM的出现统一了分割这个任务(CV任务的一个子集)的下流应用,说明了CV的大模型是可