复变函数突击

一:积分。

1:分步积分法:

在这里插入图片描述

2:参数方程法:

在这里插入图片描述

3:柯西定理:

在这里插入图片描述
在这里插入图片描述

4:柯西积分公式在这里插入图片描述

再来一道:
在这里插入图片描述
方法二和猴博士相同。
再来一道:
在这里插入图片描述

5:n:阶导数。

在这里插入图片描述

二:留数。

在这里插入图片描述

例题:
在这里插入图片描述
计算:在这里插入图片描述
再来一道:在这里插入图片描述

注:c负一就是:z的负一次方的系数。

规则一:

在这里插入图片描述

规则二:

在这里插入图片描述

注意:求留数和求积分方法一样,但结果不求2πi

在这里插入图片描述
记住:积分与留数的关系
在这里插入图片描述

原式为积分。

规则三四:

在这里插入图片描述
——————————————————————————————————
在这里插入图片描述

———————————————————————————————————
在这里插入图片描述
注:无穷远处的留数+其他的留数=0
在这里插入图片描述解析:
在这里插入图片描述

判断留数个数:就是无意义的点处。

  • 1
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
首先,$7$ 在模 $19$ 意义下的逆元是一个数 $x$,满足 $7x \equiv 1 \pmod{19}$。也就是说,$7$ 的逆元是能够让 $7$ 乘以它得到 $1$ 的数。可以使用扩展欧几里得算法求解 $7$ 在模 $19$ 意义下的逆元。 计算过程如下: 1. 首先,使用扩展欧几里得算法,求出 $7$ 和 $19$ 的最大公约数和对应的贝祖等式:$1 = 3 \times 7 - 2 \times 19$。 2. 将两边同时除以 $7$,得到:$7^{-1} \equiv 3 \pmod{19}$。 因此,$7$ 在模 $19$ 意义下的逆元是 $3$。现在,需要计算 $7^{-1} \pmod{19}$,即 $3 \pmod{19}$ 的一次。 根据模运算的性质,有 $(a \bmod n)^{-1} \equiv a^{-1} \bmod n$。因此,$(3 \bmod 19)^{-1} \equiv 3^{-1} \bmod 19$。 现在,需要计算 $3^{-1} \pmod{19}$ 的值。根据费马小定理,$a^{p-1} \equiv 1 \pmod{p}$,其 $p$ 是一个质数,$a$ 是不被 $p$ 整除的整数。因为 $19$ 是质数,而且 $3$ 不被 $19$ 整除,所以有 $3^{18} \equiv 1 \pmod{19}$。因此,$3^{-1} \equiv 3^{17} \pmod{19}$。 可以使用快速幂算法计算 $3^{17} \pmod{19}$ 的值,具体计算过程如下: $3^1 \equiv 3 \pmod{19}$ $3^2 \equiv 9 \pmod{19}$ $3^4 \equiv 9^2 \equiv 81 \equiv 5 \pmod{19}$ $3^8 \equiv 5^2 \equiv 25 \equiv 6 \pmod{19}$ $3^{16} \equiv 6^2 \equiv 36 \equiv 17 \pmod{19}$ $3^{17} \equiv 3 \cdot 3^{16} \equiv 3 \cdot 17 \equiv 16 \pmod{19}$ 因此,$7^{-1} \pmod{19} = 3 \pmod{19}$ 的一次是 $16$。即,$7^{-1} \pmod{19} = 16$。因此,$7^{-1}$ 乘以 $11$ 在模 $19$ 意义下的值为 $7^{-1} \cdot 11 \equiv 16 \cdot 11 \equiv 12 \pmod{19}$。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值