1 实验目的
- 进一步掌握反馈神经网络的原理及应用;
- 基于MATLAB实现反馈神经网络。
2 实验内容
(1)网络的状态
DHNN网络中的每个神经元都有相同的功能,其输出称为状态,用 表示,所有神经元状态构成的反馈网络的状态 ,反馈网络的初始状态为输入表示为 ,一旦初始值给定后,网络就开始进行动态演变,网络中的每个神经元的状态在不断的变化,变化规律如下:
式中, 为激活函数(转移函数),通常为符号函数:
输入 为;
对于DHNN网络,一般有 .
当网络的每个神经元的状态都不在改变时,此时的转态就是网络的输出转态,表示为:
(2) 网络的异步工作方式
所谓异步是针对权值更新来说的,网络运行时每次只有一个神经元的i按照(1)式进行转态的更新,其他神经元的状态权值不变,即,神经元状态的调整可以按照预先设定顺序进行调整,也可以随机选定。
(3)网络的同步工作方式
和异步相对应,网络的同步工作方式是一种并行方式,所有神经元同时调整状态,即:
3实验原理
反馈神经网络是一种反馈动力学系统。在这种网络中,每个神经元同时将自身的输出信号作为输入信号反馈给其他神经元,它需要工作一段时间才能达到稳定。Hopfield神经网络是反馈网络中最简单且应用广泛的模型,它具有联想记忆的功能,如果将李雅普诺夫函数定义为巡游函数,Hopfield神经网络还可以用来解决快速寻优问题。 [1]
4实验步骤
实现代码:
clear
clc