基于 MATLAB的反馈神经网络

该博客详细介绍了如何使用MATLAB实现反馈神经网络,特别是Hopfield网络。通过解释网络状态、异步和同步工作方式,以及实验步骤,展示了Hopfield网络在联想记忆和优化问题中的应用。代码示例展示了网络的创建、权重和偏差的获取,以及网络状态的模拟和可视化。
摘要由CSDN通过智能技术生成

1 实验目的

  1. 进一步掌握反馈神经网络的原理及应用;
  2. 基于MATLAB实现反馈神经网络

2 实验内容

(1)网络的状态

  DHNN网络中的每个神经元都有相同的功能,其输出称为状态,用 表示,所有神经元状态构成的反馈网络的状态 ,反馈网络的初始状态为输入表示为 ,一旦初始值给定后,网络就开始进行动态演变,网络中的每个神经元的状态在不断的变化,变化规律如下:

                                                                         

            式中, 为激活函数(转移函数),通常为符号函数:

输入 为;

                                                                               

对于DHNN网络,一般有 .

当网络的每个神经元的状态都不在改变时,此时的转态就是网络的输出转态,表示为:

                                                           

(2) 网络的异步工作方式

所谓异步是针对权值更新来说的,网络运行时每次只有一个神经元的i按照(1)式进行转态的更新,其他神经元的状态权值不变,即,神经元状态的调整可以按照预先设定顺序进行调整,也可以随机选定。

(3)网络的同步工作方式

和异步相对应,网络的同步工作方式是一种并行方式,所有神经元同时调整状态,即:

                                                                             

 

3实验原理

 反馈神经网络是一种反馈动力学系统。在这种网络中,每个神经元同时将自身的输出信号作为输入信号反馈给其他神经元,它需要工作一段时间才能达到稳定。Hopfield神经网络是反馈网络中最简单且应用广泛的模型,它具有联想记忆的功能,如果将李雅普诺夫函数定义为巡游函数,Hopfield神经网络还可以用来解决快速寻优问题。 [1] 

 4实验步骤

实现代码:

 

clear

clc

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值