CTR 预测理论(十九):高维稀疏特征场景中 LR 比 GBDT 效果好的原因

个人曾经也很多次思考过:高维稀疏特征的时候,LR 的效果会比 GBDT 好的原因,现查阅资料总结与此。

综述

在平时的项目中也遇到了不少 case,确实高维稀疏特征的时候,使用 GBDT 很容易过拟合。但是还是不知道为啥,后来深入思考了一下模型的特点,发现了一些有趣的地方。

  • 假设有 1w 个样本, y 类别 0 和 1,100 维特征,其中 10 个样本都是类别 1,而特征 f 1 f_1 f1 的值为 0,1,且刚好这 10 个样本的 f 1 f_1 f1 特征值都为 1,其余 9990 样本都为 0(在高维稀疏的情况下这种情况很常见),我们都知道这种情况在树模型的时候,很容易优化出含一个使用 f 1 f_1 f1 为分裂节点的树直接将数据划分的很好,但是当测试的时候,却会发现效果很差,因为这个特征只是刚好偶然间跟 y 拟合到了这个规律,这也是我们常说的过拟合。
  • 但是当时我还是不太懂为什么线性模型就能对这种 case 处理的好?照理说 线性模型在优化之后不也会产生这样一个式子: y = W 1 f 1 + ⋯ + W i f i + ⋯ y = W_1 f_1 + \cdots+ W_if_i + \cdots y=W1f1++Wifi+,其中 W 1 W_1 W1 特别大以拟合这十个样本吗,因为反正 f 1 f_1 f1 的值只有 0 和 1, W 1 W_1 W1 过大对其他 9990 样本不会有任何影响。
  • 后来思考后发现原因是因为现在的模型普遍都会带着正则项,而 LR 等线性模型的正则项是对权重的惩罚,也就是 W 1 W_1 W1 一旦过大,惩罚就会很大,进一步压缩 W 1 W_1 W1 的值,使他不至于过大,而树模型则不一样,树模型的惩罚项通常为叶子节点数和深度等,而我们都知道,对于上面这种 case,树只需要一个节点就可以完美分割 9990 和 10 个样本,惩罚项极其之小.
  • 这也就是为什么在高维稀疏特征的时候,线性模型会比非线性模型好的原因了:带正则化的线性模型比较不容易对稀疏特征过拟合。

总结:

  • 对于高维稀疏数据,线型模型往往结合 L1/L2 正则项,对于部分过拟合特征的惩罚会随着该部分特征值的增大而相应提高;(带正则项的线性模型不容易对稀疏特征过拟合)
  • 而对于树模型,往往只需要部分过拟合特征做分裂节点就可以完美分割样本,其很难通过限制树深度或者叶子节点数等参数达到抑制该部分过拟合的特征。

参考文献

高维稀疏特征的时候,lr 的效果会比 gbdt 好,为什么? - 沙泓州的文章 - 知乎

  • 6
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值