概率论与数理统计教程(三)-多维随机变量及其分布01:多维随机变量及其联合分布

本文详细探讨了多维随机变量的概念,包括二维随机变量的联合分布函数、联合分布列和联合密度函数。通过实例展示了如何计算二维随机变量的分布特性,并介绍了多项分布、超几何分布和均匀分布等多维分布类型。此外,还讨论了二元正态分布及其概率计算方法。
摘要由CSDN通过智能技术生成

在有些随机现象中, 对每个样本点 ω \omega ω 只用一个随机变量去描述是不够的.
譬如要研究儿童的生长发育情况, 仅研究儿童的身高 X ( ω ) X(\omega) X(ω)
或仅研究其体重 Y ( ω ) Y(\omega) Y(ω) 都是局部的, 有必要把 X ( ω ) X(\omega) X(ω)
Y ( ω ) Y(\omega) Y(ω) 作为一个整体来考虑, 讨论它们同时变化的统计规律性,
进一步可以讨论 X ( ω ) X(\omega) X(ω) Y ( ω ) Y(\omega) Y(ω) 之间的关系. 在有些随机现象中,
甚至要同时研究两个以上随机变量.
如何来研究多维随机变量的统计规律性呢? 仿一维随机变量,
我们先研究联合分布函数,然后研究离散随机变量的联合分布列、连续随机变量的联合密度函数等.
§3.1 多维随机变量及其联合分布
3.1.1 多维随机变量
下面我们先给出 n n n 维随机变量的定义.
定义 3.1.1 如果 X 1 ( ω ) , X 2 ( ω ) , ⋯   , X n ( ω ) X_{1}(\omega), X_{2}(\omega), \cdots, X_{n}(\omega) X1(ω),X2(ω),,Xn(ω)
是定义在同一个样本空间 Ω = { ω } \Omega=\{\omega\} Ω={ ω} 上的 n n n 个随机变量, 则称
X ( ω ) = ( X 1 ( ω ) , X 2 ( ω ) , ⋯   , X n ( ω ) ) \boldsymbol{X}(\omega)=\left(X_{1}(\omega), X_{2}(\omega), \cdots, X_{n}(\omega)\right) X(ω)=(X1(ω),X2(ω),,Xn(ω))
n n n 维 (或 n n n 元) 随机变量或随机向量.
注意,多维随机变量的关键是定义在同一样本空间上, 对于不同样本空间
Ω 1 \Omega_{1} Ω1 Ω 2 \Omega_{2} Ω2 上的两个随机变量, 我们只能在乘积空间
Ω 1 × Ω 2 = { ( ω 1 , ω 2 ) : ω 1 ∈ Ω 1 , ω 2 ∈ Ω 2 } \Omega_{1} \times \Omega_{2}=\left\{\left(\omega_{1}, \omega_{2}\right): \omega_{1} \in \Omega_{1}, \omega_{2} \in \Omega_{2}\right\} Ω1×Ω2={ (ω1,ω2):ω1Ω1,ω2Ω2}
及其事件域上讨论它们,这一点在以下讨论中是默认的.
在实际问题中,多维随机变量的情况是经常会遇到的.壁如
- 在研究四岁至六岁儿童的生长发育情况时, 我们感兴趣于每个儿童 (样本点
ω \omega ω )的身高 X 1 ( ω ) X_{1}(\omega) X1(ω) 和体重 X 2 ( ω ) X_{2}(\omega) X2(ω), 这里
( X 1 , X 2 ) \left(X_{1}, X_{2}\right) (X1,X2) 是一个二维随机变量.
- 在研究每个家庭的支出情况时, 我们感兴趣于每个家庭 (样本点 ω \omega ω )
的衣食住行四个方面, 若用
X 1 ( ω ) , X 2 ( ω ) , X 3 ( ω ) , X 4 ( ω ) X_{1}(\omega), X_{2}(\omega), X_{3}(\omega), X_{4}(\omega) X1(ω),X2(ω),X3(ω),X4(ω)
分别表示衣食住行的花费占其家庭总收人的百分比,则
( X 1 , X 2 , X 3 , X 4 ) \left(X_{1}, X_{2}, X_{3}, X_{4}\right) (X1,X2,X3,X4) 就是一个四维随机变量.
3.1.2 联合分布函数
定义 3.1.2 对任意的 n n n 个实数 x 1 , x 2 , ⋯   , x n , n x_{1}, x_{2}, \cdots, x_{n}, n x1,x2,,xn,n 个事件
{ X 1 ⩽ x 1 } , { X 2 ⩽ x 2 } , ⋯ \left\{X_{1} \leqslant x_{1}\right\},\left\{X_{2} \leqslant x_{2}\right\}, \cdots { X1x1},{ X2x2},,
{ X n ⩽ x n } \left\{X_{n} \leqslant x_{n}\right\} { Xnxn} 同时发生的概率
F ( x 1 , x 2 , ⋯   , x n ) = P ( X 1 ⩽ x 1 , X 2 ⩽ x 2 , ⋯   , X n ⩽ x n ) F\left(x_{1}, x_{2}, \cdots, x_{n}\right)=P\left(X_{1} \leqslant x_{1}, X_{2} \leqslant x_{2}, \cdots, X_{n} \leqslant x_{n}\right) F(x1,x2,,xn)=P(X1x1,X2x2,,Xnxn)
称为 n n n 维随机变量 ( X 1 , X 2 , ⋯   , X n ) \left(X_{1}, X_{2}, \cdots, X_{n}\right) (X1,X2,,Xn)
的联合分布函数.
本章主要研究二维随机变量, 二维以上的情况可类似讨论.
在二维随机变量 ( X , Y ) (X, Y) (X,Y) 场合, 联合分布函数
F ( x , y ) = P ( X ⩽ x , Y ⩽ y ) F(x, y)=P(X \leqslant x, Y \leqslant y) F(x,y)=P(Xx,Yy) 是事件 { X ⩽ \{X \leqslant { X x } x\} x}
{ Y ⩽ y } \{Y \leqslant y\} { Yy} 同时发生 (交) 的概率. 如果将二维随机变量 ( X , Y ) (X, Y) (X,Y)
看成是平面上随机点的坐标, 那么联合分布函数 F ( x , y ) F(x, y) F(x,y) ( x , y ) (x, y) (x,y)
处的函数值就是随机点 ( X , Y ) (X, Y) (X,Y) 落在以 ( x , y ) (x, y) (x,y)为顶点的左下无穷直角区域
(见图 3.1.1) 上的概率.
定理 3.1.1 任一二维联合分布函数 F ( x , y ) F(x, y) F(x,y) 必具有如下四条基本性质:
(1) 单调性 F ( x , y ) F(x, y) F(x,y) 分别对 x x x y y y 是单调非减的, 即
x 1 < x 2 x_{1}<x_{2} x1<x2 时, 有
F ( x 1 , y ) ⩽ F ( x 2 , y ) F\left(x_{1}, y\right) \leqslant F\left(x_{2}, y\right) F(x1,y)F(x2,y),
y 1 < y 2 y_{1}<y_{2} y1<y2 时, 有
F ( x , y 1 ) ⩽ F ( x , y 2 ) F\left(x, y_{1}\right) \leqslant F\left(x, y_{2}\right) F(x,y1)F(x,y2).
(2) 有界性 对任意的 x x x y y y, 有 0 ⩽ F ( x , y ) ⩽ 0 \leqslant F(x, y) \leqslant 0F(x,y) 1 ,
外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传{width=“180px”}
图3.1.1 以 ( x , y ) (x, y) (x,y) 为顶点的左下无穷直角区域
F ( − ∞ , y ) = lim ⁡ ⋯ → − ∞ F ( x , y ) = 0 , F ( x , − ∞ ) = lim ⁡ y → − ∞ F ( x , y ) = 0 , F ( ∞ , ∞ ) = lim ⁡ x , y → ∞ F ( x , y ) = 1. \begin{array}{l} F(-\infty, y)=\lim \limits_{\cdots \rightarrow-\infty} F(x, y)=0, \\ F(x,-\infty)=\lim \limits_{y \rightarrow-\infty} F(x, y)=0, \\ F(\infty, \infty)=\lim \limits_{x, y \rightarrow \infty} F(x, y)=1 . \end{array} F(,y)=limF(x,y)=0,F(x,)=ylimF(x,y)=0,F(,)=x,ylimF(x,y)=1.

(3) 右连续性 对每个变量都是右连续的, 即
F ( x + 0 , y ) = F ( x , y ) , F ( x , y + 0 ) = F ( x , y ) . \begin{array}{l} F(x+0, y)=F(x, y), \\ F(x, y+0)=F(x, y) . \end{array} F(x+0,y)=F(x,y),F(x,y+0)=F(x,y).

(4) 非负性 对任意的 a < b , c < d a<b, c<d a<b,c<d
P ( a < X ⩽ b , c < Y ⩽ d ) = F ( b , d ) − F ( a , d ) − F ( b , c ) + F ( a , c ) ⩾ 0. P(a<X \leqslant b, c<Y \leqslant d)=F(b, d)-F(a, d)-F(b, c)+F(a, c) \geqslant 0 . P(a<Xb,c<Yd)=F(b,d)F(a,d)F(b,c)+F(a,c)0.
证明 (1) 因为当 x 1 < x 2 x_{1}<x_{2} x1<x2 时, 有
{ X ⩽ x 1 } ⊂ { X ⩽ x 2 } \left\{X \leqslant x_{1}\right\} \subset\left\{X \leqslant x_{2}\right\} { Xx1}{ Xx2},
所以对任意给定的 y y y
{ X ⩽ x 1 , Y ⩽ y } ⊂ { X ⩽ x 2 , Y ⩽ y } , \left\{X \leqslant x_{1}, Y \leqslant y\right\} \subset\left\{X \leqslant x_{2}, Y \leqslant y\right\}, { Xx1,Yy}{ Xx2,Yy},
由此可得
F ( x 1 , y ) = P ( X ⩽ x 1 , Y ⩽ y ) ⩽ P ( X ⩽ x 2 , Y ⩽ y ) = F ( x 2 , y ) , F\left(x_{1}, y\right)=P\left(X \leqslant x_{1}, Y \leqslant y\right) \leqslant P\left(X \leqslant x_{2}, Y \leqslant y\right)=F\left(x_{2}, y\right), F(x1,y)=P(Xx1,Yy)P(Xx2,Yy)=F(x2,y),
F ( x , y ) F(x, y) F(x,y) 关于 x x x 是单调非减的. 同理可证 F ( x , y ) F(x, y) F(x,y) 关于 y y y
是单调非减的.
(2) 由概率的性质可知 0 ⩽ F ( x , y ) ⩽ 1 0 \leqslant F(x, y) \leqslant 1 0F(x,y)1.
又因为对任意的正整数 n n n
lim ⁡ x → − ∞ { X ⩽ x } = lim ⁡ n → ∞ ⋂ m = 1 n { X ⩽ − m } = ∅ , lim ⁡ x → ∞ { X ⩽ x } = lim ⁡ n → ∞ ⋃ m = 1 n { X ⩽ m } = Ω , \begin{array}{l} \lim \limits_{x \rightarrow-\infty}\{X \leqslant x\}=\lim \limits_{n \rightarrow \infty} \bigcap_{m=1}^{n}\{X \leqslant-m\}=\varnothing, \\ \lim \limits_{x \rightarrow \infty}\{X \leqslant x\}=\lim \limits_{n \rightarrow \infty} \bigcup_{m=1}^{n}\{X \leqslant m\}=\Omega, \end{array} xlim{ Xx}=nlimm=1n{ Xm}=,xlim{ Xx}=nlimm=1n{ Xm}=Ω,

{ Y ⩽ y } \{Y \leqslant y\} { Yy} 也类似可得. 再由概率的连续性, 就可得
F ( − ∞ , y ) = F ( x , − ∞ ) = 0 , F ( ∞ , ∞ ) = 1. F(-\infty, y)=F(x,-\infty)=0, \quad F(\infty, \infty)=1 . F(,y)=F(x,)=0,F(,)=1.
(3) 固定 y y y, 仿一维分布函数右连续的证明, 就可得知 F ( x , y ) F(x, y) F(x,y) 关于 x x x
是右连续的.同样固定 x x x, 可证得 F ( x , y ) F(x, y) F(x,y) 关于 y y y 是右连续的.
(4) 只需证: 对 a < b , c < d a<b, c<d a<b,c<d
P ( a < X ⩽ b , c < Y ⩽ d ) = F ( b , d ) − F ( a , d ) − F ( b , c ) + F ( a , c ) . P(a<X \leqslant b, c<Y \leqslant d)=F(b, d)-F(a, d)-F(b, c)+F(a, c) . P(a<Xb,c<Yd)=F(b,d)F(a,d)F(b,c)+F(a,c).
为此记 (见图 3.1.2)
A = { X ⩽ a } , B = { X ⩽ b } , C = { Y ⩽ c } , D = { Y ⩽ d } , \begin{array}{ll} A=\{X \leqslant a\}, & B=\{X \leqslant b\}, \\ C=\{Y \leqslant c\}, & D=\{Y \leqslant d\}, \end{array} A={ Xa},C={ Yc},B={ Xb},D={ Yd},

这里 A A A { X ⩽ a , Y < ∞ } \{X \leqslant a, Y<\infty\} { Xa,Y<} 的简写, C C C
{ X < ∞ , Y ⩽ c } \{X<\infty, Y \leqslant c\} { X<,Yc} 的简写,其他类同.考虑到
{ a < X ⩽ b } = B − A = B ∩ A ˉ , { c < Y ⩽ d } = D − C = D ∩ C ˉ , \begin{array}{l} \{a<X \leqslant b\}=B-A=B \cap \bar{A}, \\ \{c<Y \leqslant d\}=D-C=D \cap \bar{C}, \end{array} { a<Xb}=BA=BAˉ,{ c<Yd}=DC=DCˉ,

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传{width=“162px”}
图 3.1.2 二维随机变量 ( X , Y ) (X, Y) (X,Y) 落在矩形中的情况
A ⊂ B , C ⊂ D A \subset B, C \subset D AB,CD, 由此可得
0 ⩽ P ( a < X ⩽ b , c < Y ⩽ d ) = P ( B ∩ A ˉ ∩ D ∩ C ˉ ) = P ( B D − ( A ∪ C ) ) = P ( B D ) − P ( A B D ∪ B C D ) = P ( B D ) − P ( A D ∪ B C ) = P ( B D ) − P ( A D ) − P ( B C ) + P ( A B C D ) = P ( B D ) − P ( A D ) − P ( B C ) + P ( A C ) = F ( b , d ) − F ( a , d ) − F ( b , c ) + F ( a , c ) . \begin{aligned} 0 & \leqslant P(a<X \leqslant b, c<Y \leqslant d) \\ & =P(B \cap \bar{A} \cap D \cap \bar{C}) \\ & =P(B D-(A \cup C)) \\ & =P(B D)-P(A B D \cup B C D) \\ & =P(B D)-P(A D \cup B C) \\ & =P(B D)-P(A D)-P(B C)+P(A B C D) \\ & =P(B D)-P(A D)-P(B C)+P(A C) \\ & =F(b, d)-F(a, d)-F(b, c)+F(a, c) . \end{aligned} 0P(a<Xb,c<Yd)=P(BAˉDCˉ)=P(BD(AC))=P(BD)P(ABDBCD

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值