上一篇介绍了UNet网络的总体结构和工程实现,详见UNet的PyTorch实现,本篇进一步深入UNet网络细节,进行代码层面的分析。
首先,还是先贴出UNet的网络结构图,以便和实现细节做对照。
从上图可以看到,Unet网络的结构比较简单,左侧分支每一层包含两个重复的卷积,我们命名为DoubleConv,从第二层开始,都是max_pool+DoubleConv;右侧分支每一层都是up_conv +copy_crop+DoubleConv,在最后输出层,有一个1x1 conv。所以,我们可以将以上网络简化为4个模块,分别是:
- 输入层的DoubleConv模块;
- 左侧分支从第二层开始的max_pool+DoubleConv,称为Down模块;
- 右侧分支的up_conv+copy_crop+DoubleConv,称为Up模块;
- 输出层的1x1卷积,称为OutConv模块。
下面我们分别来介绍这几个模块的实现细节。
1. 模块实现
1.1 DoubleConv
每个DoubleConv模块由两个“Conv2d+NatchNorm2d+ReLU”组成,代码如下:
class DoubleConv(nn.Module):
"""(convolution => [BN] => ReLU) * 2"""
def __init__(self, in_channels, out_channels, mid_channels=None):
super().__init__()
if not mid_channels:
mid_channels = out_channels
self.double_conv = nn.Sequential(
nn.Conv2d(in_channels, mid_channels, kernel_size=3, padding=1, bias=False),
nn.BatchNorm2d(mid_channels),
nn.ReLU(inplace=True),
nn.Conv2d(mid_channels, out_channels, kernel_size=3, padding=1, bias=False),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True)
)
def forward(self, x):
return self.double_conv(x)
1.2 Down
从架构图中可知,每个Down模块由一个“MaxPool2d+DoubleConv”组成,代码如下:
class Down(nn.Module):
"""Downscaling with maxpool then double conv"""
def __init__(self, in_channels, out_channels):
super().__init__()
self.maxpool_conv = nn.Sequential(
nn.MaxPool2d(2),
DoubleConv(in_channels, out_channels)
)
def forward(self, x):
return self.maxpool_conv(x)
MaxPool2d(2)相当于2倍下采样。
1.3 Up
右侧上行模块由于涉及到copy and crop,所以实现起来会略微复杂一些。首先经过一个上采样或转置卷积,然后从左侧路径的同一层feature map中截取相同的size(从图中很容易可以看出,左侧同一层中的feature map比右侧的size要大一些),与右侧feature map合并,最后再进行DoubleConv。代码如下:
class Up(nn.Module):
"""Upscaling then double conv"""
def __init__(self, in_channels, out_channels, bilinear=True):
super().__init__()
# if bilinear, use the normal convolutions to reduce the number of channels
if bilinear:
self.up = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)
self.conv = DoubleConv(in_channels, out_channels, in_channels // 2)
else:
self.up = nn.ConvTranspose2d(in_channels, in_channels // 2, kernel_size=2, stride=2)
self.conv = DoubleConv(in_channels, out_channels)
def forward(self, x1, x2):
x1 = self.up(x1)
# input is CHW
diffY = x2.size()[2] - x1.size()[2]
diffX = x2.size()[3] - x1.size()[3]
x1 = F.pad(x1, [diffX // 2, diffX - diffX // 2,
diffY // 2, diffY - diffY // 2])
# if you have padding issues, see
# https://github.com/HaiyongJiang/U-Net-Pytorch-Unstructured-Buggy/commit/0e854509c2cea854e247a9c615f175f76fbb2e3a
# https://github.com/xiaopeng-liao/Pytorch-UNet/commit/8ebac70e633bac59fc22bb5195e513d5832fb3bd
x = torch.cat([x2, x1], dim=1)
return self.conv(x)
1.4 OutConv
最后是输出层,由1x1卷积实现:
class OutConv(nn.Module):
def __init__(self, in_channels, out_channels):
super(OutConv, self).__init__()
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=1)
def forward(self, x):
return self.conv(x)
2. 整体架构
有了以上几个网络组成模块,我们就可以按照原始网络模型架构来组织网络,代码如下:
class UNet(nn.Module):
def __init__(self, n_channels, n_classes, bilinear=False):
super(UNet, self).__init__()
self.n_channels = n_channels
self.n_classes = n_classes
self.bilinear = bilinear
self.inc = DoubleConv(n_channels, 64) # 第一层只有DoubleConv
self.down1 = Down(64, 128) # max_pool + DoubleConv生成左侧第二层
self.down2 = Down(128, 256) # 同上生成左侧第三层
self.down3 = Down(256, 512) # 同上生成左侧第四层
factor = 2 if bilinear else 1 # 默认bilinear==False
self.down4 = Down(512, 1024 // factor) # 生成最下面一层
self.up1 = Up(1024, 512 // factor, bilinear) # TransposedConv + copy_crop + DoubleConv生成右侧分支第四层
self.up2 = Up(512, 256 // factor, bilinear) # 同上,生成右侧第三层
self.up3 = Up(256, 128 // factor, bilinear) # 同上,生成右侧第二层
self.up4 = Up(128, 64, bilinear) # 同上,生成右侧第二层
self.outc = OutConv(64, n_classes) # 输出层
def forward(self, x):
x1 = self.inc(x)
x2 = self.down1(x1)
x3 = self.down2(x2)
x4 = self.down3(x3)
x5 = self.down4(x4)
x = self.up1(x5, x4)
x = self.up2(x, x3)
x = self.up3(x, x2)
x = self.up4(x, x1)
logits = self.outc(x)
return logits
OK,UNet的网络结构就构造完成了,接下来就可以用已有数据集对它训练了。篇幅原因,本篇就写这么多吧。