UNet网络详解

上一篇介绍了UNet网络的总体结构和工程实现,详见UNet的PyTorch实现,本篇进一步深入UNet网络细节,进行代码层面的分析。

首先,还是先贴出UNet的网络结构图,以便和实现细节做对照。

从上图可以看到,Unet网络的结构比较简单,左侧分支每一层包含两个重复的卷积,我们命名为DoubleConv,从第二层开始,都是max_pool+DoubleConv;右侧分支每一层都是up_conv +copy_crop+DoubleConv,在最后输出层,有一个1x1 conv。所以,我们可以将以上网络简化为4个模块,分别是:

  • 输入层的DoubleConv模块;
  • 左侧分支从第二层开始的max_pool+DoubleConv,称为Down模块;
  • 右侧分支的up_conv+copy_crop+DoubleConv,称为Up模块;
  • 输出层的1x1卷积,称为OutConv模块。

下面我们分别来介绍这几个模块的实现细节。

### 绘制UNet网络结构图 #### 使用Draw.io绘制UNet架构 为了在draw.io中创建一个清晰且专业的UNet网络结构图,可以遵循以下指导: - **准备阶段** - 打开浏览器并访问[draw.io](https://www.draw.io/)网站。 - 创建一个新的绘图文档。 - **构建编码器部分** 卷积层通常表示为矩形框,在每个框内注明卷积核大小、步幅和其他参数。对于UNet中的下采样路径(即编码器),每一级都由两个3×3的卷积组成,后面跟着一个2×2的最大池化操作用于减少空间维度[^1]。 - **添加跳跃连接** 跳跃连接是UNet的关键特性之一,它允许低层次特征直接传递给高层次解码器部分。通过虚线箭头从编码器一侧相应位置指向解码器对应的位置来可视化这些连接。 - **实现解码器组件** 解码器负责逐步恢复图像的空间分辨率。这一过程中会执行转置卷积(也称为反卷积)以增加尺寸,并再次应用两次3×3的标准卷积处理融合后的特征图。确保按照原始论文描述的比例关系布置各层。 - **最终输出层** 整个网络的最后一部分是一个额外的卷积层,其作用是将通道数转换为目标类别数量。此步骤可以通过简单的矩形节点加上适当标注完成。 ```mermaid graph TB; subgraph Encoder "Encoder" input --> conv1_1["Convolution"] conv1_1 --> relu1_1["ReLU"] relu1_1 --> conv1_2["Convolution"] conv1_2 --> maxpool1["Max Pooling"] maxpool1 --> conv2_1["Convolution"] conv2_1 --> relu2_1["ReLU"] relu2_1 --> conv2_2["Convolution"] conv2_2 --> maxpool2["Max Pooling"] ... end subgraph Decoder "Decoder" upconv4["Up Convolution"] --> concat4{"Concatenate"} concat4 --> conv4_1["Convolution"] conv4_1 --> relu4_1["ReLU"] relu4_1 --> conv4_2["Convolution"] ... output["Output Layer"] end maxpool2 -.-> upconv4 ``` 上述Mermaid图表仅展示了简化版的UNet框架示意;实际建模时应依据具体需求调整层数和细节设置。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值