线性代数让我想想:两步得到二阶矩阵的逆

两步得到二阶矩阵的逆

设有二阶矩阵 A A A 如下所示:
A = [ a b c d ] A=\left[\begin{array}{ccccc|c} a & b\\ c & d\\ \end{array}\right] A=[acbd]
那么 A A A 的伴随矩阵为(主对调,副变号):
A = [ d − b − c a ] A=\left[\begin{array}{ccccc|c} d & -b\\ -c & a\\ \end{array}\right] A=[dcba]
由于行列式 ∣ A ∣ |A| A 的值为:
∣ A ∣ = ∣ a b c d ∣ = a d − b c |A|=\left|\begin{array}{ll} a & b \\ c & d \\ \end{array}\right| =ad-bc A=acbd=adbc
那么根据公式 A − 1 = 1 ∣ A ∣ A ∗ A^{-1}=\frac{1}{|A|}A^* A1=A1A,求出逆矩阵 A − 1 A^{-1} A1
A − 1 = 1 ∣ A ∣ A ∗ = 1 a d − b c [ d − b − c a ] A^{-1}=\frac{1}{|A|}A^*=\frac{1}{ad-bc}\left[\begin{array}{ccccc|c} d & -b\\ -c & a\\ \end{array}\right] A1=A1A=adbc1[dcba]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值