两步得到二阶矩阵的逆
设有二阶矩阵
A
A
A 如下所示:
A
=
[
a
b
c
d
]
A=\left[\begin{array}{ccccc|c} a & b\\ c & d\\ \end{array}\right]
A=[acbd]
那么
A
A
A 的伴随矩阵为(主对调,副变号):
A
=
[
d
−
b
−
c
a
]
A=\left[\begin{array}{ccccc|c} d & -b\\ -c & a\\ \end{array}\right]
A=[d−c−ba]
由于行列式
∣
A
∣
|A|
∣A∣ 的值为:
∣
A
∣
=
∣
a
b
c
d
∣
=
a
d
−
b
c
|A|=\left|\begin{array}{ll} a & b \\ c & d \\ \end{array}\right| =ad-bc
∣A∣=∣∣∣∣acbd∣∣∣∣=ad−bc
那么根据公式
A
−
1
=
1
∣
A
∣
A
∗
A^{-1}=\frac{1}{|A|}A^*
A−1=∣A∣1A∗,求出逆矩阵
A
−
1
A^{-1}
A−1
A
−
1
=
1
∣
A
∣
A
∗
=
1
a
d
−
b
c
[
d
−
b
−
c
a
]
A^{-1}=\frac{1}{|A|}A^*=\frac{1}{ad-bc}\left[\begin{array}{ccccc|c} d & -b\\ -c & a\\ \end{array}\right]
A−1=∣A∣1A∗=ad−bc1[d−c−ba]