transformers的分词工具BertTokenizer encode_plus参数

该段代码展示了如何使用transformers库的BertTokenizer进行文本编码。它涉及到将句子转化为BERT可理解的ID序列,包括添加特殊标记,填充和截断操作,并返回PyTorch张量。此外,还演示了如何进行ID到token和token到ID的转换。
摘要由CSDN通过智能技术生成

from transformers import BertTokenizer
#uncased是不支持小写
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased', do_lower_case=True)
encoded_dict = tokenizer.encode_plus(
                        sent,                      # Sentence to encode.
                        add_special_tokens = True, # Add '[CLS]' and '[SEP]'
                        max_length = 100,           # Pad & truncate all sentences.
                        padding = 'max_length',     #补全操作
                        truncation = True,          #截断操作
                        return_attention_mask = True,   # Construct attn. masks.
                        return_tensors = 'pt',     # Return pytorch tensors.
                   )
    

tokenizer id转token 和token转id

tokenizer = AutoTokenizer.from_pretrained("bert-base-chinese")
tokenizer
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值