你真的了解LDO吗?——带你读大厂datasheet

本文介绍了LDO的基本概念,以AMS1117为例,详细解读了datasheet中的重要参数,如输出电压、线性调整率、负载调整率等,强调了在设计过程中理解和考虑器件的极限工作条件和应用提示,旨在帮助硬件工程师避免设计错误,提高设计水平。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 引言: 

        各位新入门或者从业多年的硬件工程师们,你们是否认真了解过器件datasheet所描述的信息?

        当我们拿到第一块开发板时,我们都第一次阅读原理图时,完全不知道那些字母和数字代表什么意思,然后我们通过百度搜索到1117时一个线性稳压器(LDO),输入5V时可以输出3.3V给MCU供电,再然后我们自己制作PCB时可能会发现为什么我系统接入24V电源时1117总是发热严重甚至烧毁?询问前辈或者通过自己的搜索重新查看datasheet发现1117在absolute maximum ratings栏里有一个参数叫input voltage = 15V,终于我们知道器件有一个最大输入电压15V,超过15V时会对器件造成不可逆的损伤。

        再然后,当我们设计一个锂电池系统时,我们也会发现为什么锂电池接在1117的输入端时输出不是3.3V呢?这时候我们就要知道有一个参数叫Dropout Voltage,他指的是器件要达到指定输出时,输入端与输出端的最小电压差,1117的Dropout Voltage典型值为1.1V,锂电池电压在3.6-4.2V,我们想要让1117输出3.3V,那么1117的输入端,也就是锂电池电压至少应为3.3+1.1=4.4V,锂电池无法满足,因此器件无法达到理想的3.3V输出。

        我们刚入门时也许都会犯这些设计错误,但我们总要成长,记住自己犯下的错并且在下次设计时避开,尽可能的,我们也要给新入门的开发者提供帮助,让国内硬件设计水平更上一层楼。(本人也仅仅是个小白,希望能将自己曾经遇到的问题、自己的理解和感悟记录下来供他人学习和参考)

        如果你刚巧喜欢硬件、喜欢对比器件的不同点与优劣,那我希望我的文章能对你有用~

        下面开启正文部分,我们首先来了解一下什么是LDO。我们以最简单的器件开始聊起,逐渐深入,带你从不同的视角看待硬件设计。

1、LDO是什么?

        LDO(Low DropOut Voltage Regulator)中文名——低压差线性稳压器。它在电路中的作用是将一个高电压电源转换为一个低电压电源给器件使用,在电子电路中非常常见,在近现代数字、模拟、数模混合系统中离不开它。我

关于 YOLOv11 的工作原理和实现细节,目前并没有官方文档或广泛认可的研究资料提及该版本的具体架构设计。YOLO 系列模型通常由其开发者 Joseph Redmon 和后续维护者 Alexey Bochkovskiy 推动更新,而公开的主流版本包括 YOLOv1 至 YOLOv8(截至当前时间)。如果提到 YOLOv11,可能是社区中的非正式变体或是特定场景下的定制化开发。 以下是基于现有 YOLO 架构的知识推测可能的设计方向以及其实现方式: ### 1. 基于前代版本的核心特性继承 假设 YOLOv11 是一种延续性的升级版本,则可以合理推测它会继承并优化之前版本的关键技术特点。例如,在 YOLOv5 中引入了高效的预处理方法[^2],而在 YOLOv4 中则强调了高精度与高速度之间的平衡[^3]。因此,YOLOv11 可能进一步提升以下几个方面: - **多尺度输入支持**:通过动态调整网络输入尺寸来增强对不同大小物体的检测能力。 - **注意力机制集成**:利用 CBAM (Convolutional Block Attention Module) 或其他形式的空间通道注意模块提高特征表达力。 ### 2. 新增功能的可能性分析 考虑到深度学习领域的发展趋势,YOLOv11 还可能会加入一些新兴的技术要素,比如但不限于以下几点: - **Transformer 结合卷积神经网络(CNN)**:借鉴 DETR(Detection Transformer)[^4]的思想,尝试将自注意力(Self-Attention)融入传统 CNN 骨干网中,从而更好地捕捉全局上下文关系。 - **自动化超参数调优工具链整合**:提供更加便捷易用的 AutoML 功能接口,允许用户快速找到适合具体任务的最佳配置组合。 ### 示例代码片段展示如何构建一个多分支结构用于目标检测任务 下面给出一段伪代码表示一个简化版的多分支残差连接单元定义过程: ```python import torch.nn as nn class MultiBranchResidualBlock(nn.Module): def __init__(self, in_channels, out_channels): super(MultiBranchResidualBlock, self).__init__() # 定义三个不同的路径操作 self.branch_1 = nn.Sequential( nn.Conv2d(in_channels=in_channels,out_channels=out_channels,kernel_size=1,stride=1,padding=0), nn.BatchNorm2d(out_channels), nn.ReLU() ) self.branch_2 = nn.Sequential( nn.Conv2d(in_channels=in_channels,out_channels=out_channels//2,kernel_size=1,stride=1,padding=0), nn.BatchNorm2d(out_channels//2), nn.ReLU(), nn.Conv2d(in_channels=out_channels//2,out_channels=out_channels,kernel_size=3,stride=1,padding=1), nn.BatchNorm2d(out_channels), nn.ReLU() ) self.branch_3 = nn.MaxPool2d(kernel_size=3,stride=1,padding=1) def forward(self,x): b1_out = self.branch_1(x) b2_out = self.branch_2(x) b3_out = self.branch_3(x) concat_result = torch.cat([b1_out,b2_out,b3_out],dim=1) return concat_result ``` 上述代码仅作为一个简单的例子说明如何创建复杂的层堆叠模式;实际应用时还需要考虑更多因素如正则化手段、激活函数选择等。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Distance_90

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值