【考研数学】正交变换后如果不是标准型怎么办?| 关于二次型标准化的一些思考


引言

前阵子做了下 20 年真题,问题大大的,现在订正到矩阵的第一个大题,是关于二次型正交变换的。和常规不同的是,原来的二次型,经过一个正交变换,并没有得到一个标准型。我一下子就傻眼了,无从落笔。

在这里插入图片描述

看了下答案,说是利用正交变换也是相似变换这一点,可以得到变换前后的两个二次型矩阵相似,从而得出相关结论。

看到这里的瞬间感觉到深深的恐惧,似乎之前从来都没想到过这些联系,只知道标准化是有这么一个正交矩阵做变换。要是其他知识点也出一个这样的题,那今年可就不好受了。

于是动手敲下此文,以期整理好二次型标准化变换的内在原理。


一、回顾

二次型的定义是什么?

是含有 n n n 个变量 x 1 , x 2 , ⋯   , x n x_1,x_2,\cdots,x_n x1,x2,,xn 且每项都是二次的齐次多项式,如 f ( x 1 , x 2 , x 3 ) = x 1 2 + x 2 2 + x 3 2 + 2 x 1 x 2 + 4 x 2 x 3 + 2 x 1 x 3 f(x_1,x_2,x_3)=x_1^2+x_2^2+x_3^2+2x_1x_2+4x_2x_3+2x_1x_3 f(x1,x2,x3)=x12+x22+x32+2x1x2+4x2x3+2x1x3

任何一个二次型都可以写成 X T A X \pmb{X}^T\pmb{A}\pmb{X} XTAX 的矩阵形式,我们也称它为二次型矩阵,如上面的例子,可以写成: f ( x 1 , x 2 , x 3 ) = [ x 1 x 2 x 3 ] T [ 1 1 1 1 1 2 1 2 1 ] [ x 1 x 2 x 3 ] f(x_1,x_2,x_3)=\begin{bmatrix} x_1 \\ x_2 \\ x_3\end{bmatrix}^T\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 2 \\ 1 & 2 & 1\end{bmatrix}\begin{bmatrix} x_1 \\ x_2 \\ x_3\end{bmatrix} f(x1,x2,x3)= x1x2x3 T 111112121 x1x2x3

如果 A \pmb{A} A 不是实对称矩阵,也是可以写成矩阵形式的,只是没办法把矩阵形式和原二次型对应起来,所以我们一般不讨论。而如果 A \pmb{A} A 是实对称矩阵,那就可以对应起来了。所以任何一个二次型都对应有一个实对称矩阵。

什么叫标准二次型?

是只含有平方项,而不含有交叉项的二次型,如 f 2 ( x 1 , x 2 , x 3 ) = x 1 2 + x 2 2 + x 3 2 f_2(x_1,x_2,x_3)=x_1^2+x_2^2+x_3^2 f2(x1,x2,x3)=x12+x22+x32 。为什么要定义一个二次型出来?因为此时如果写成矩阵形式,二次型矩阵 A \pmb{A} A 是对角阵,有很多不错的性质。像 f 2 f_2 f2 就可以表示为如下矩阵形式: f 2 ( x 1 , x 2 , x 3 ) = X T [ 1 1 1 ] X f_2(x_1,x_2,x_3)=\pmb{X}^T\begin{bmatrix} 1 \\ & 1 & \\ & & 1\end{bmatrix}\pmb{X} f2(x1,x2,x3)=XT 111 X

怎么化为标准型?

引入定理 1:任何一个二次型总可以通过可逆的线性变换 X = P Y \pmb{X}=\pmb{P}\pmb{Y} X=PY ,即 P \pmb{P} P 是可逆矩阵,化为标准型。即 f ( X ) = X T A X → Y T ( P T A P ) Y = l 1 y 1 2 + l 2 y 2 2 + ⋯ + l m y m 2 f(\pmb{X)=\pmb{X}^T\pmb{A}\pmb{X}\to}\pmb{Y}^T(\pmb{P^T}\pmb{A}\pmb{P})\pmb{Y}=l_1y_1^2+l_2y_2^2+\cdots+l_my_m^2 f(X)=XTAXYT(PTAP)Y=l1y12+l2y22++lmym2 不过这个标准型不唯一,也就是说不同 P \pmb{P} P 可能化到的标准型系数不一。但是,系数的正、负、零的个数是相同的,我们也称之为正、负、零惯性指数。

引入定理 2:特别地,如果二次型矩阵 A \pmb{A} A 是实对称矩阵,一定存在一个正交矩阵 Q \pmb{Q} Q ,通过正交变换 X = Q Y \pmb{X}=\pmb{Q}\pmb{Y} X=QY ,可将二次型化为标准型。即 f ( X ) = X T A X → Y T ( Q T A Q ) Y = λ 1 y 1 2 + λ 2 y 2 2 + ⋯ + λ n y n 2 f(\pmb{X)=\pmb{X}^T\pmb{A}\pmb{X}\to}\pmb{Y}^T(\pmb{Q^T}\pmb{A}\pmb{Q})\pmb{Y}=\lambda_1y_1^2+\lambda_2y_2^2+\cdots+\lambda_ny_n^2 f(X)=XTAXYT(QTAQ)Y=λ1y12+λ2y22++λnyn2 这个标准型就是唯一的了,系数为矩阵 A \pmb{A} A 的特征值。

根据这两个定理,我们只要求出了 P , Q \pmb{P},\pmb{Q} P,Q 这两个可逆矩阵就可以求出标准型了。对于求 P \pmb{P} P 这个一般的可逆阵,我们有配方法;对于求 Q \pmb{Q} Q 这个特殊的正交矩阵,我们有正交变换法。


二、思考

如果经过正交变换没化成标准型怎么办?首先,这是可能存在的,因为根据定理 2 ,是存在一个正交矩阵 Q \pmb{Q} Q ,使得经过正交变换后可以化为标准型,不一定每一个正交变换都可以化成标准型。

设变换前的二次型矩阵为 A \pmb{A} A ,变换后为 B \pmb{B} B ,由标准化定义,有 Q T A Q = B \pmb{Q}^T\pmb{A}\pmb{Q}=\pmb{B} QTAQ=B Q \pmb{Q} Q 正交,有 Q − 1 A Q = B \pmb{Q}^{-1}\pmb{A}\pmb{Q}=\pmb{B} Q1AQ=B ,故 A ∼ B \pmb{A}\sim\pmb{B} AB。于是,矩阵 A , B \pmb{A},\pmb{B} A,B 的特征值相同,行列式和迹也相同。

而且,一定存在正交矩阵 Q 1 , Q 2 \pmb{Q_1},\pmb{Q_2} Q1,Q2 ,使得 Q 1 T A Q = Λ = Q 2 T B Q 2 \pmb{Q_1}^T\pmb{A}\pmb{Q}=\pmb{\Lambda}=\pmb{Q_2}^T\pmb{B}\pmb{Q_2} Q1TAQ=Λ=Q2TBQ2


写在最后

看来是自己对二次型过程和相似对角化过程的联系不太清楚,下次在碰见二次型变换的题目,先把定义写边上!

参考文献
AI_Younger_Man,二次型:实对称矩阵

  • 7
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Douglassssssss

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值