睿智的keras深度学习(零)——keras使用时可能遇到的参数及含义(持续更新)

compile中的参数

示例

model.compile(loss="sparse_categorical_crossentropy", optimizer="sgd", metrics=["accuracy"])

解释

loss参数

这个参数表示的是模型训练时采用的损失函数

实例中的loss参数是sparse_categorical_crossentropy表明其损失函数使用的是针对稀疏标签的损失函数

loss参数以及应用情况如下表:

loss参数适用情况
sparse_categorical_crossentropy稀疏标签(每个实例都只有一个类目标索引)
categorical_crossentropyone hot编码的数据
binary_crossentropy二分类

optimizer参数

这个参数表示的是模型训练时选用的优化器

示例中的优化器选用的是随机梯度下降(SGD),由于学习率在模型训练中起到了很大的作用,所以一般使用optimizer=keras.optimizers.SGD(lr=???)来设置学习率,而不是使用"sgd"(默认的lr=0.01)

metrics参数

metrics=[“accuracy”]相当于metrics = [keras.metrics.sparse_categorical_accuracy]

Callbacks参数

示例

early_stopping_cb = EarlyStopping(patience=10, restore_best_weights=True)
checkpoint_cb = ModelCheckpoint("要保存的模型的名字.h5", save_best_only=True)

patience

表示的是多少轮模型没有提高就退出

restore_best_weights和save_best_only

为True时仅保存最有的模型

TensorBoard参数

示例

from keras.callbacks import TensorBoard

tensorboard_cb = TensorBoard(run_logdir)

解释

TensorBoard是在设置callback的时候使用,其中run_logdir是保存文件的路径

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

艾醒(AiXing-w)

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值