睿智的keras深度学习(四)——TensorBoard进行快速、精美的可视化

系列文章往期回顾

睿智的keras深度学习(零)——keras使用时可能遇到的参数及含义
睿智的keras深度学习(一)——阈值逻辑单元和多层感知机
睿智的keras深度学习(二)——函数式API构建顺序模型快速上手
睿智的keras深度学习(三)——迅速了解回调函数

创建目录路径

在这里我们首先为储存使用tensorboard所需的文件设置一个路径

import os

curdir = os.curdir
root_logdir = os.path.join(curdir, "my_logs")
def get_run_logdir():
    import time
    run_id = time.strftime("run_%Y_%m_%d_-%H_%M_%M_%S")
    return os.path.join(root_logdir, run_id)

run_logdir = get_run_logdir()
print(run_logdir)

在这里插入图片描述

在训练时设置Tensorboard参数

from keras.callbacks import TensorBoard

tensorboard_cb = TensorBoard(run_logdir)
history = history = model.fit(X_train, y_train, epochs=20, validation_data=(X_valid, y_valid), callbacks=[tensorboard_cb])

TensorBoard可视化jupyter做法

%load_ext tensorboard
%tensorboard --logdir=./my_logs --port=6006

TensorBoard可视化cmd命令行做法

请添加图片描述

可视化效果图

请添加图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

艾醒(AiXing-w)

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值