Keras深度学习实战——股价预测

本文介绍了使用Keras进行股价预测,通过处理时间序列数据,结合函数式API构建神经网络模型。数据集包含历史股价,目标是预测收盘价。模型采用时间窗口策略,使用前五个价格作为输入,预测第六个价格。在模型中,还探讨了如何结合新闻数据以提升预测准确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

0. 前言

我们已经学习了使用神经网络进行音频、文本等非结构化数据和房价、信用等结构化数据分析的相关任务。在本节中,我们通过学习股价预测任务研究时间序列数据的分析问题。

1. 股价预测

1.1 数据集介绍

本文使用的股价数据集来自 GitHib,也可以使用格式与之类似的股价数据集。下载数据集后,查看其内容,可以看到数据集中包含时间、开盘时股价等一系列相关信息,本文需要预测的是股价当天的最终价格,即 Close 列的数据:

股价数据集

1.2 神经网络模型分析

为了预测股价,我们根据以下思路构建神经网络模型:

  • 按照时间发生顺序对数据集进行排序
  • 以前五个股票价格数据作为输入,第六个股票价格数据作为输出
  • 滑动时间窗口,在模型的下一个输入使
评论 34
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

盼小辉丶

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值