玩转大语言模型——使用LM Studio在本地部署deepseek R1的零基础)教程

系列文章目录

玩转大语言模型——使用langchain和Ollama本地部署大语言模型
玩转大语言模型——三分钟教你用langchain+提示词工程获得猫娘女友
玩转大语言模型——ollama导入huggingface下载的模型
玩转大语言模型——langchain调用ollama视觉多模态语言模型
玩转大语言模型——使用transformers中的pipeline调用huggingface中模型
玩转大语言模型——transformers微调huggingface格式的中文Bert模型
玩转大语言模型——使用GraphRAG+Ollama构建知识图谱
玩转大语言模型——完美解决GraphRAG构建的知识图谱全为英文的问题
玩转大语言模型——配置图数据库Neo4j(含apoc插件)并导入GraphRAG生成的知识图谱
玩转大语言模型——本地部署带聊天界面deepseek R1的小白教程
玩转大语言模型——本地部署deepseek R1和本地数据库的小白教程(Ollama+AnythingLLM)
玩转大语言模型——使用LM Studio在本地部署deepseek R1的零基础)教程
玩转大语言模型——Ubuntu系统环境下使用llama.cpp进行CPU与GPU混合推理deepseek
玩转大语言模型——使用Kiln AI可视化环境进行大语言模型微调数据合成



前言

在前期的几个文章中我们已经介绍了很多带UI的本地化部署方式了,而今天我们要介绍的LM Studio,不仅可以实现本机的使用,还可以为其他软件或处于同一局域网下的其他计算机提供接口的调用,和其他本地部署软件配合起来使用更佳。本章将介绍在Windows环境下和Linux环境下下载并部署LM-Studio

Windows环境下载安装

官网:https://lmstudio.ai/
在官网上找到合适的版本直接下载
在这里插入图片描述
下载后根据指引安装,进入到页面后点击Get your first KLM
在这里插入图片描述
然后点右上角skip,进入到以下界面
在这里插入图片描述

Linux环境下载安装

下载

在这里插入图片描述
选择这个适用于Linux的软件版本,下载下来是这个这样的文件,一般是在/home/用户名/Downloads路径下
在这里插入图片描述

为文件赋予权限

sudo chmod u+x LM-Studio-0.3.10-6-x64.AppImage

增加权限后双击这个文件就可以运行了,不过在软件栏里并不能找到这个应用

将LM Studio添加到应用栏

抽取desktop文件和图标文件

./LM-Studio-0.3.10-6-x64.AppImage --appimage-extract

执行问命令后会在当前目录出现一个squashfs-root的文件夹
在这里插入图片描述
进入文件夹看到的这两个文件就是抽取出来的我们需要的文件
在这里插入图片描述
编辑lm-studio.desktop文件,把ExecIcon替换成读者自己的路径即可

[Desktop Entry]
Name=LM Studio
Exec=/home/aixing/Downloads/LM-Studio-0.3.10-6-x64.AppImage --no-sandbox %U
Terminal=false
Type=Application
Icon=/home/aixing/Downloads/squashfs-root/lm-studio.png
StartupWMClass=LM Studio
X-AppImage-Version=0.3.10
Comment=Use the chat UI or local server to experiment and develop with local LLMs.
Keywords=developer;llm;
category=Development;Utility;
MimeType=x-scheme-handler/lmstudio;
Categories=Development; 

需要特别注意的是,路径要求是绝对路径,查看路径的命令为pwd
在这里插入图片描述

添加并更新应用栏

将配置好的.desktop文件移动到应用目录下

cp lm-studio.desktop $HOME/.local/share/applications/

更新应用栏

update-desktop-database $HOME/.local/share/applications/

更新过后就可以看到应用栏上添加了LM-Studo
在这里插入图片描述

修改配置

设置语言为中文

点击右下角这个标志
在这里插入图片描述
然后选择语言为简体中文
在这里插入图片描述

修改模型存储位置

点击左下角的Power User或者Developer
在这里插入图片描述
选择左侧文件夹的图标,然后更改模型路径。修改路径这一步的原因是,大语言模型占的存储空间一般都比较大,为避免过多占用C盘空间,一般换到其他盘符下,但如果C盘空间足够,可以跳过此步骤。
在这里插入图片描述

下载模型

特别注意的是,LM Studio中用到的模型格式均为gguf格式。
模型可以从modelscope或者hf-mirror下载,笔者在本篇中是使用modelscope中下载的deepseek R1-7B模型。

下载链接:https://modelscope.cn/models/unsloth/DeepSeek-R1-Distill-Qwen-7B-GGUF/files

来到下载页面,发现有多个gguf模型,有满血7B模型和量化到各种程度的模型,建议参照模型大小是稍小于本地显存即可
在这里插入图片描述
查看本地显存的方式为:打开任务管理器,点击性能,查看NVIDAIGPU内存
在这里插入图片描述

这里需要注意的是,LM Studio需要的模型需要放到二级目录下,我们需要在刚刚设置的模型目录下新建两级目录。为了方便辨别,笔者推荐将下载好的模型放在模型目录/模型名/模型版本路径下,比如笔者将
下载的gguf模型放到目录:模型目录/deepseek/DeepSeek-R1-Distill-Qwen-7B下。

模型加载与运行

点击上侧的按钮选择本地模型运行
在这里插入图片描述
选择好模型后进入对话界面
在这里插入图片描述
使用结束时记得点击Eject卸载模型,不然会一直占用显存
在这里插入图片描述

模型应用

上传附件

点击这个回形针,可以上传本地文档,
在这里插入图片描述
点击后进入以下界面,这一操作后,LM Studio会自动对文档做信息增强检索(RAG)
在这里插入图片描述

笔者上传的是一个由AI生成的学校制度大纲,以这个为例问他主要介绍了什么
在这里插入图片描述
点击发送后会根据文档内容回答
在这里插入图片描述

提供API接口服务

点击左侧绿色按钮,然后加载模型
在这里插入图片描述
然后把Settings中的所有设置全打开,再点击左侧的按钮启动
在这里插入图片描述
如果在启动时右侧有以下报错,可以考虑修改一下端口号
在这里插入图片描述
笔者修改成了2345端口
在这里插入图片描述
右侧提示信息如下图所示说明能够正常应用
在这里插入图片描述
LM Studio所支持的接口调用与OpenAI的接口一致
在这里插入图片描述
为了快速验证是否可以正常使用,笔者直接打开之前文章中配置过的Anything LLM,点击设置并选择LLM提供者
在这里插入图片描述
选择LM Studio
在这里插入图片描述
如果在前面调整过端口,需要再点进去一次,更改端口,更改的端口要与之前修改的一致,笔者更改的是2345,所以这里也应该是2345
在这里插入图片描述
同时,如果在设置时没有自动弹出来模型,也需要自己设置一下
在这里插入图片描述
随后点击Save Settings保存后就可以使用Anything LLM调用接口了

### 部署 DeepSeek R1 模型或服务 为了在本地部署 DeepSeek R1 模型或服务,在 LM Studio 中的操作流程涉及多个方面,包括环境准备、模型下载以及配置启动等。 #### 环境准备 确保本地开发环境中已安装必要的依赖项。对于 Python 开发者来说,通常需要有 Python 版本兼容的支持,比如 Python 3.x,并且建议创建虚拟环境来管理项目依赖关系[^1]。 ```bash python -m venv deepseek_env source deepseek_env/bin/activate # Linux or macOS deepseek_env\Scripts\activate # Windows ``` 接着更新 pip 并安装其他所需的库: ```bash pip install --upgrade pip pip install torch torchvision torchaudio # 假设使用 PyTorch 构建的模型 ``` #### 下载并加载 DeepSeek R1 模型 获取官方发布的预训练权重文件或是通过 API 请求获得最新版本。如果是在私有服务器上运行,则可能需要从内部存储位置拉取这些资源。一旦有了模型文件路径,就可以利用相应的框架加载它[^2]。 ```python import torch from transformers import AutoModelForSequenceClassification, AutoTokenizer model_name_or_path = "path/to/deepseek-r1" tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) model = AutoModelForSequenceClassification.from_pretrained(model_name_or_path) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.to(device) ``` #### 启动服务接口 为了让外部应用能够调用此模型的服务端点,可以构建 RESTful Web Service 或 gRPC Server 来暴露预测功能给客户端应用程序访问。Flask 是一种轻量级的选择用于快速搭建 HTTP 接口;而 FastAPI 则提供了更好的性能和异步支持[^3]。 ```python from fastapi import FastAPI from pydantic import BaseModel app = FastAPI() class InputText(BaseModel): text: str @app.post("/predict/") async def predict(input_text: InputText): inputs = tokenizer(input_text.text, return_tensors="pt").to(device) outputs = model(**inputs)[0].argmax().item() return {"prediction": int(outputs)} ``` 最后一步是将上述代码保存为 `main.py` 文件并通过命令行启动 FastAPI 应用程序: ```bash uvicorn main:app --reload --host 0.0.0.0 --port 8000 ``` 这样就完成了 DeepSeek R1本地部署过程[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

艾醒(AiXing-w)

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值