傅里叶变换

1.1 Fourier Series
当一个函数是一个周期函数的时候,我们能够将其分解成Fourier Series。一个周期函数能够分解成Fourier Series需要满足狄利赫里条件:
1:在任何周期内,函数必须可积。
2:在任一优先区间中,函数只能够取有限个最大值和最小值。
2:在任何有限区间上,函数只能有有限个第一类间断点。
详细解释请阅读该文章:https://blog.csdn.net/constantin_ouc/article/details/78881709

1.2 Gibbs phenomenon
如果一个函数有有限个间断点那么该函数能够分解成Fourier Series,但是Fourier Series是连续的所以函数和Fourier Series并不是点点收敛的而是一致收敛的。
一致收敛:应该是给定任意数e>0,可以找到这样一个固定数N,对于所有x,使得当n>N,不等式 ∣ f n ( x ) − f ( x ) ∣ &lt; e |f_n(x)-f(x)|&lt;e fn(x)f(x)<e,其图像以一定规律趋近于f(x)。

我们发现就算Fourier Series的项数不断增加,Fourier Series组成的图像仍存在着overshoot和undershoot.我们称这个现象为Gibbs现象。
我们对Fourier Series求导然后解得倒数为0的点,这个点即为Gibbs现象的overshoot点,我们将该overshoot点带入Fourier Series求解发现结果为1.0895(对方波的Fourier Series)而函数实际值为1。所以我们发现当项数足够大的时候Fourier Series的overshoot地方仍与函数有一定的差距,但是该差距随着项数的增加而减小。
以上就是Gibbs现象。

1.3 Fouruer transform as a limiting case of Fourier series
当函数的周期无限大的时候我们就得到了Fouruer transform。
在Fourier series中每一项的f=n/T,为离散的,当T为无穷大的时候f就为无穷小即dx,所以周期无限大的函数的Fouruer transform为连续函数。同样此类函数的Fouruer transform也要满足狄利赫里条件。
方波的Fouruer transform为sinc函数,但是sinc函数却不满足狄利赫里的可积条件,所以sinc函数没有Fouruer transform,但是这类函数的Fouruer transform是很有用的所以额外为他们定义了扩展的Fouruer transform。

1.4 Sampling by averaging, distributions and delta function
我们由上知道rect的傅里叶变换是一个sinc函数,而delta函数是有rect函数变换而来, δ ( x ) = l i m 2 L − &gt; 0 ( 1 2 L r e c t ( x 2 L ) ) \delta(x)=lim_{2L-&gt;0}(\frac{1}{2L}rect(\frac{x}{2L})) δ(x)=lim2L>0(2L1rect(2Lx))所以当L趋近于0的时候,sinc函数为常数即1,所以delta函数的Fouruer transform为常数1即所有频率对delta函数的贡献相等。

1.5 Properties of delta function
1.Sampling property

2.Delta function with scaling

3.Relation between delta function and unit step
d u ( x ) d x = δ ( x ) \frac{du(x)}{dx}=\delta(x) dxdu(x)=δ(x).

1.6 Fourier transform of unit step and sign functions
step函数的导数是delta函数,于是利用delta函数求得step函数的傅里叶变换为 U ( f x ) = 1 i 2 π f x + 1 2 δ ( f x ) U(f_x)=\frac{1}{i2\pi f_x}+\frac12\delta(f_x) U(fx)=i2πfx1+21δ(fx)
而符号函数 s g n ( x ) = 2 u ( x ) − δ ( f x ) sgn(x)=2u(x)-\delta(f_x) sgn(x)=2u(x)δ(fx),所以
F ( s g n ( x ) ) = 1 i π f x \mathscr{F}(sgn(x))=\frac{1}{i\pi f_x} F(sgn(x))=iπfx1.

1.7 Fourier transform of a train of delta functions
另梳状函数的T等于1,其Fourier transform仍然是一个梳状函数。

1.8 Fourier transform of a Gaussian
计算高斯函数的Fourier transform 有一个trick.
J = ∫ − ∞ ∞ d x &ThickSpace; e x p ( − π x 2 ) . J=\int^{\infty}_{-\infty}dx\;exp(-\pi x^2). J=dxexp(πx2).
J 2 = ∬ d x d y &ThickSpace; e x p [ − π ( x 2 + y 2 ) ] J^2=\iint dxdy\;exp[-\pi(x^2+y^2)] J2=dxdyexp[π(x2+y2)]=1.
所以J=1.
利用上式求得
F { e x p ( − π x 2 ) } = e x p ( − π f x 2 ) \mathscr{F}\{exp(-\pi x^2)\}=exp(-\pi f^2_x) F{exp(πx2)}=exp(πfx2)

1.9 Fourier transform of chirp phase
F { e x p ( i π x 2 ) } = e x p ( i π / 4 ) e x p ( − i π f x 2 ) \mathscr{F}\{exp(i\pi x^2)\}=exp(i\pi /4)exp(-i\pi f^2_x) F{exp(iπx2)}=exp(iπ/4)exp(iπfx2)
这个函数和高斯函数很相似,但是注意区别。

1.10 Properties of Fourier transform
1.Linearity

2.Scaling property
F { g ( x a ) } = ∣ a ∣ G ( a f x ) \mathscr{F}\{g(\frac xa)\}=|a|G(af_x) F{g(ax)}=aG(afx)

3.Shifting property
F { g ( x − a ) } = e x p ( − i 2 π f x a ) G ( f x ) \mathscr{F}\{g(x-a)\}=exp(-i2\pi f_xa)G(f_x) F{g(xa)}=exp(i2πfxa)G(fx)

4.Energy(Parseval)theorem
就是说傅里叶变换后和变换前的能量即L2 范数是不变的,因为傅里叶变化后虽有吉布斯现象但是overshoot和undershoot相互抵消所以他们能量恒定。

5.Convolution theorem
即卷积的傅里叶变换等于傅里叶变换的乘积.

1.11.Fourier transform of the 2D circ function
circ(r/a)即半径a内等于1,半径处等于1/2半径外等于0。
F { c i r c ( r a ) } = ( π a 2 ) j i n c ( 2 a ρ ) \mathscr{F}\{circ(\frac ra)\}=(\pi a^2)jinc(2aρ) F{circ(ar)}=(πa2)jinc(2aρ)
其中:
j i n c ( u ) = 2 J 1 ( 2 π a ρ ) ( 2 π a ρ ) jinc(u)=2\frac{J_1(2\pi aρ)}{(2\pi aρ)} jinc(u)=2(2πaρ)J1(2πaρ)
其中J为贝塞尔函数。

1.12 Fourier slice theorem
太麻烦就不写了,请参考这篇博客:
https://blog.csdn.net/kevinoop/article/details/79871723

1.13 Wigner distribution
请参考这篇博客:
https://blog.csdn.net/iscassucess/article/details/7880122

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值