小波变换主篇(1)Multiresolution Expansions

1.Series Expansions
我们知道要进行小波变换首先要选择小波基,假设我们选择的小波基为 φ(x) φ ( x ) 那么 V=Spank{φk(x)}¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯ V = S p a n k { φ k ( x ) } ¯ 就能组成一个空间,我们的f(x)可以在这个空间分解成:

f(x)=kαkφk(x)(1) f ( x ) = ∑ k α k φ k ( x ) ( 1 )

其中
αk=φ˜k(x)f(x)dx(2) α k = ∫ φ ~ k ∗ ( x ) f ( x ) d x ( 2 )

φ(x) φ ( x ) 称为基的条件是:
<φj(x),φk(x)>=0jk(3) < φ j ( x ) , φ k ( x ) >= 0 j ≠ k ( 3 )
<script type="math/tex; mode=display" id="MathJax-Element-16738"> <φ_j(x),φ_k(x)> =0\quad j \not=k \quad(3)</script>

2.Scaling Functions
我们在上面基的条件下加上缩放得到新的基函数如下:

φj,k(x)=2j/2φ(2jxk)(4) φ j , k ( x ) = 2 j / 2 φ ( 2 j x − k ) ( 4 )

其中k进行平移,j控制缩放。以上式为基函数我们将得到一系列分辨率不同的空间:
Vj=Spank{φj,k(x)}¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯(5) V j = S p a n k { φ j , k ( x ) } ¯ ( 5 )

我们最常用的 φ(x) φ ( x ) 函数为Harr函数:
φ(x)={10<=x<10otherwise(6) φ ( x ) = { 1 0<=x<1 0 o t h e r w i s e ( 6 )

要想成为一个合格的基函数,至少要满足以下四个条件:
1.相同尺度下不同的基函数要正交既要满足公式(3)。
2.低尺度基函数形成的空间是高尺度基函数形成空间的子空间。
3.最低尺度即 j= j = − ∞ 是 所 有 尺 度 空 间 的 子 空 间
4.最高尺度即 j= j = ∞ 能对所有函数进行分解变换。

由上我们知道j为空间是j+1维空间的子集,所以j维空间能够被j+1维空间的基函数分解表示既:

φj,k(x)=nαnφj+1,n(x)(7) φ j , k ( x ) = ∑ n α n φ j + 1 , n ( x ) ( 7 )

将(4)带入(7)有:
φj,k(x)=nhφ(n)2(j+1)/2φ(2j+1xn)(8) φ j , k ( x ) = ∑ n h φ ( n ) 2 ( j + 1 ) / 2 φ ( 2 j + 1 x − n ) ( 8 )

当j,k都为0时,有下式:
φ(x)=nhφ(x)2φ(2xn)(9) φ ( x ) = ∑ n h φ ( x ) 2 φ ( 2 x − n ) ( 9 )

上式被称为the MRA equation,是一个非常重要的式子。
It states that the expansaion functions of any subspace can be built from double-resolution copies of themselves-that is,from expansion functions of the next higher resolution space.
以上是书上的原话。
对于harr函数 hφ(0)=hφ(1)=1/2 h φ ( 0 ) = h φ ( 1 ) = 1 / 2 .带入(9)式有 φ(x)=φ(2x)+φ(2x1.) φ ( x ) = φ ( 2 x ) + φ ( 2 x − 1. )

3.Wavelet Functions

ψj,k(x)=2j/2ψ(2jxk)(10) ψ j , k ( x ) = 2 j / 2 ψ ( 2 j x − k ) ( 10 )

这个函数和 φ(x) φ ( x ) 函数形式是一样的。这个基函数所形成的空间我们称为Wj,那么这个空间是干什么用的呢?我们知道Vj是Vj+1的子空间,那么Vj空间和Vj+1空间之间有一个差空间,那么这个差空间我们就用Wj空间来填补,也就是说 Vj+1=Vj+Wj V j + 1 = V j + W j 这样我们就能用两个低频空间来表示一个高频空间。当然这个函数 ψ(x) ψ ( x ) 不是任何函数都可以的,它必须和 φ(x) φ ( x ) 有关系(不然怎么做他的补集呢)
ψ(x)=nhψ(n)2φ(2xn)(11) ψ ( x ) = ∑ n h ψ ( n ) 2 φ ( 2 x − n ) ( 11 )

其中
hψ(n)=(1)nhφ(1n)(12) h ψ ( n ) = ( − 1 ) n h φ ( 1 − n ) ( 12 )

也就是说给定 φ(x) φ ( x ) ψ(x) ψ ( x ) 也就确定了。
(11)式的目的只是为了能够求出 ψ(x) ψ ( x )
于是我们就能将一个实数空间分解成如下:
L2(R)=Vj0+Wj0+1+Wj0+2+...(13) L 2 ( R ) = V j 0 + W j 0 + 1 + W j 0 + 2 + . . . ( 13 )

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值