CVPR 2020——Learning to Segment 3D Point Clouds in 2D Image Space

论文:https://arxiv.org/abs/2003.05593
源码:https://github.com/Zhang-VISLab/Learning-to-Segment-3D-Point-Clouds-in-2D-Image-Space

Abstract

  • 研究如何有效和高效地将这些点云投影到2D图像空间中的问题,从而使传统2D卷积神经网络(CNN)(例如U-Net)可用于分割。
  • 受到图绘制的激励,并将其重新构造为整数编程问题,以学习每个单个点云的topology-preserving图到网格映射。
  • 为了在实践中加快计算速度,提出了一种新颖的分层近似算法。借助Delaunay三角剖分从点云构建图,使用多尺度U-Net进行分割。

(一)Introduction

  • 作为存储几何特征的基本数据结构,点云会将从物理世界扫描的点的3D位置保存为无序列表。
  • 相比之下,图像在2D网格上具有规则的图案,并且在局部邻域中的像素组织良好。这样的局部规则性对于快速2D卷积是有好处的,使得比较优秀的卷积神经网络(CNN),例如FCN ,GoogleNet 和ResNet ,可以有效地从像素中提取局部特征。
  • 与传统的CNN不同,PointNet缺乏提取局部特征的能力,可能会限制其性能。

论文解决的问题:

How to effectively and efficiently project 3D point clouds into a 2D image space so that we can take advantage of local pattern extraction in conventional 2D CNNs for point cloud semantic segmentation?

投影很容易导致点云中的结构信息丢失,这种结构上的损失是破坏性的,可能会引入大量噪声,以至于原始云中的局部模式被完全改变,即使使用2D常规CNN也会导致性能不佳。因此,良好的点对图像投影功能是弥合点云输入和2D CNN之间差距的关键。

论文方法:

  • 从点云构造图。
  • 使用图形绘图将图形投影到图像中。
  • 使用U-Net分割点。

论文溯源:

  • 受到图形绘制中图形可视化技术的启发(图形绘制是数学和计算机科学领域,其目标是在具有某些特定属性的平面上显示图形的节点和边缘。)

  • Kamada-Kawai(KK)算法是最广泛使用的无向图可视化技术之一。通常,KK算法定义一个目标函数,该目标函数测量每个图布局的能量。一定的图形距离,并搜索(局部)最小值,以提供合理的2D可视化效果。

  • KK算法在连续的2D空间而不是2D网格(即离散空间)中工作。

  • 提出了一种整数编程(IP)来强制执行KK算法以学习2D网格上的投影,但是会导致NP-complete问题。

  • KK算法的计算复杂度至少为O(n2),且图中节点数为n(例如,点云中的有数千个点),即使对IP进行舍入处理,其计算代价仍然过高。

论文改进:

  • 为了加快计算速度,遵循分层策略,并进一步提出了一种新的具有 O ( n L + 1 L ) O(n\frac{L+1}{L}) O(nLL+1)复杂度的分层,其中L表示数字层次结构中的级别。实际上,这种分层方案还可以帮助使用Delaunay三角剖分降低点云图构建的复杂度,对于3D点,最坏情况下的复杂度为 O ( n 2 ) O(n^{2}) O(n2)
  • 学习点云的图形到网格投影,然后将其填充3D点和零来生成 ( x , y , z ) (x,y,z) xyz图像。将这些图像表示提供给多尺度U-Net 进行分割。

论文贡献:

  • 第一个在学习2D图像表示以进行3D点云分割的背景下探索图形绘制算法。
  • 提出了一种新颖的分层近似算法,该算法考虑了将点云映射为图像表示的计算,并保留了每个云中各点之间的局部信息。
  • 使用结合了Delaunay三角剖分的图绘制算法和多尺度U-Net的集成方法,展示了ShapeNet和PartNet上的最新性能。

(二)Related Work

(三)Our Method: A System Overview

3.1. Graph Construction from Point Clouds

提出现有不足:

  • 在原来论文中,通常通过连接每个点的K个最近邻居(KNN)来生成来自点云的图形。
  • 然而,这样的KNN方法受制于选择合适的K。当K太小时,这些点旨在形成小的子图(即,簇),而不能保证子图之间的连通性。
  • 当K太大时,点密集连接,从而导致局部特征提取中的噪声更多。

分析自己改进:

  • 采用了Delaunary三角剖分一种在计算几何中广泛使用的三角剖分方法)来基于点的位置创建图形。
  • 三角剖分图具有三个优点:(1)保证图中所有节点的连接; (2)所有本地节点直接相连; (3)图连接的总数相对较小。在我们的实验中,
  • 发现Delaunary三角剖分的分割性能要比使用KNN(K = 20)的最佳分割效果略好,边距约为0.7%。
  • Delaunay三角剖分的最坏情况下的计算复杂度为 O ( n ⌈ d 2 ⌉ ) O(n^{\left \lceil \frac{d}{2}\right \rceil}) O(n2d),其中d是特征维,而 ⌈ ⋅ ⌉ \left \lceil \cdot \right \rceil 表示上限操作。因此,在3D空间中,复杂度为 O ( n 2 ) O(n^{2}) O(n2)
3.2. Graph Drawing: from Graphs to Images

步骤:

  1. g = ( ν , ε ) g=(\nu,\varepsilon ) g=(ν,ε)是具有顶点集 ν \nu ν和边集 ε ⊆ ν × ν \varepsilon\subseteq \nu \times \nu εν×ν 的无向图 。
  2. s i j ≥ 1 , ∨ i ≠ j s_{ij}\geq 1,\vee i\neq j sij1,i=j是距离,例如两个顶点 v i , v j ∈ ν v_{i},v_{j}\in \nu vi,vj
  • 2
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
2020年的计算机视觉与模式识别国际会议(CVPR)中,小样本学习成为了一个热门话题。在CVPR 2020中,许多重要的研究都集中于小样本学习解决方案。 小样本学习的意义在于模型如何从很少的数据点中学习。在现实世界中,我们面临的很多问题都是小样本问题,例如医学影像分析,金融风险评估,自然语言处理等等。采用小样本学习的方法为这些问题提供了有效的解决方案。 在2020年的CVPR中,研究者们提出了许多小样本学习算法和模型。其中最重要的是元学习。元学习在小样本学习中非常重要。元学习的基本思想是通过迁移学习,让模型从不同数据集中进行学习并进行知识迁移学习。在元学习中,一个模型会从一个任务中学习并推广到其他任务中。 另一种常见的小样本学习方法是采用生成式对抗网络(GANs)进行特征提取和图像生成。研究者们使用GANs来生成新的图片样本,从而增加数据样本的数量。这种方法在小样本学习中非常有用,因为GANs可以生成无限数量的样本集。 总之,小样本学习在计算机视觉和模式识别领域中变得越来越重要。在CVPR 2020中,我们看到了许多新方法和技术的出现,它们为解决小样本学习问题提供了前所未有的解决方案。我们相信,随着更多的研究和技术的进步,小样本学习将成为计算机视觉和模式识别的重要工具。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值