使用MMDetection进行目标检测

本文档详细介绍了如何在本地安装MMDetection并利用其进行目标检测。通过配置文件、模型文件和待检测的图片或视频,只需几行代码即可实现目标检测。示例代码展示了使用faster_rcnn_r50_fpn_1x_coco模型对单张图片进行推理,并用可视化结果展示boundingbox及类别和置信度。
摘要由CSDN通过智能技术生成

首先需要按照官方文档在本机的电脑上安装好MMDetection,不熟悉的小伙伴可以看我下面的这篇教程。
mmdetection的使用_dejahu的博客-CSDN博客
安装好mmdetection后,对图片和视频进行目标检测非常简单,只需要3个文件即可

  • 模型的配置文件
  • 模型文件
  • 需要进行推理的图片或者视频

详细的代码如下:

from mmdet.apis import init_detector, inference_detector, show_result_pyplot
import mmcv

config_file = '../configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py'
# download the checkpoint from model zoo and put it in `checkpoints/`
# url: https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_1x_coco/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth
checkpoint_file = '../checkpoints/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth'

# build the model from a config file and a checkpoint file
model = init_detector(config_file, checkpoint_file, device='cuda:0')

# test a single image
img = 'demo.jpg'
result = inference_detector(model, img)

# show the results
show_result_pyplot(model, img, result)

可视化的效果如下,boundingbox左上方的文字分别表示类别和置信度。

image-20210827192849699

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

肆十二

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值