Windows下使用tensorrt配置YOLOv8进行加速

Windows下使用tensorrt配置YOLOv8进行加速

致谢:

win10下 yolov8 tensorrt模型加速部署【实战】 - 知乎 (zhihu.com)

yolov8 tensorrt 实战之先导_哔哩哔哩_bilibili

FeiYull/TensorRT-Alpha: 🔥🔥🔥TensorRT for YOLOv8、YOLOv8-Pose、YOLOv8-Seg、YOLOv8-Cls、YOLOv7、YOLOv6、YOLOv5、YOLONAS…🚀🚀🚀CUDA IS ALL YOU NEED.🍎🍎🍎 (github.com)

本次部署的流程是pytorch转换为onnx再转换为trt

配套资源文件下载地址:待更新

前期准备

安装vs2019

直接默认在C盘安装,防止后续出错

vs2019的下载地址位于:[Downloads & Keys - Visual Studio Subscriptions](https://my.visualstudio.com/Downloads?q=Visual Studio 2019)

需要登录之后才可以进行下载,不要使用太新的,太新的会导致未知的问题出现。

image-20240330183835589

安装cuda和cudnn以及tensorrt

cuda安装直接也选择在默认目录即可,安装的时候请选择默认目录,防止不必要的麻烦,并且需要先安装vs再安装cuda,这样可以直接把插件加入到vs中,后面使用非常方便。

image-20240330185146947

安装之后首先可以在C盘该目录下找到安装好的cuda组件

image-20240330185243077

并且在命令行中输入nvcc -V之后会显示cuda对应的版本信息。

image-20240330185319341

image-20240330185421642

tensorrt移动到F盘中,并将lib目录添加到系统环境变量中。

image-20240330185818146

Opencv安装并添加环境变量

之后安装opencv并将其添加到系统环境变量中,注意此处需要添加两个环境变量。

image-20240330190130625

进行tensorrt的测试

直接打开官方提供的mnist数据集的测试、

image-20240330190824210

重新生成解决方案

image-20240330190919783

测试成功!!!!

image-20240330191113058

创建属性表

属性表创建之后后续我们直接进行属性表的添加即可,对于新项目而言非常之方便。

tensorrt属性表

首先随便创建一个c++的空项目

image-20240330191315200

创建新的属性表

image-20240330191600663

点击属性表,在添加对应的依赖。

包含目录中添加tensorrt对应的依赖文件,注意这个位置有三个库文件

image-20240330210128559

库目录中添加对应的lib目录

image-20240330192147425

然后在链接器的输入中添加对应的lib文件,所有的lib文件都添加进来

image-20240330192351015

在预处理器中添加对应指令_CRT_SECURE_NO_WARNINGS:

image-20240330192701321

opencv属性表

包含目录,.h文件

image-20240330193536451

库目录,lib文件

image-20240330193640719

链接器文件中添加对应的链接器文件,带d的表示debug模式

image-20240330194135523

cuda属性表在这个位置,直接添加现成的即可

image-20240330194451579

项目测试

直接在当前的解决方案中新建空项目,分别是原始代码中的yolov8中和utils文件中以及tensorrt的官方示例中拷贝对应的文件加载到项目中来,按照x64的形式进行生成,因为我是先安装的cuda所以导致,可能有加载不到的问题,所以最好是先安装vs再安装cuda,非常方便之。

image-20240330214431886

编译生成exe之后,直接执行下列指令可以对模型进行预测。

app_yolov8.exe  --model=../../data/yolov8/yolov8n.trt --size=640 --batch_size=1  --img=../../data/6406407.jpg   --show --savePath
Project2.exe  --model=yolov8n.trt --size=640 --batch_size=1  --img=000110.jpg  --show --savePath

Project2.exe  --model=yolov8n.trt --size=640 --batch_size=8  --video=demo.mp4  --show --savePath=../

预测效果如下所示:

image-20240330213724458

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

肆十二

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值