【小样本图像分割-1】PANet: Few-Shot Image Semantic Segmentation with Prototype Alignment


最近看SAM分割模型中多次提到了小样本图像的分割,为了能够搞清楚整个研究的思路,现在将小样本图像分割的论文内容做个笔记,用于备用。本次阅读的论文来自ICCV2019的一篇文章,用的是比较传统

文章的地址:论文地址

代码的地址:开源代码

摘要

尽管深度cnn在图像语义分割方面取得了很大的进步,但它们通常需要大量密集标注的图像进行训练,并且难以推广到看不见的对象类别。因此,开发了少量镜头分割,以学习仅从几个注释示例中执行分割。本文从度量学习的角度解决了具有挑战性的少镜头分割问题,并提出了一种新的原型对准网络PANet,以更好地利用支持集的信息。我们的PANet从嵌入空间内的一些支持图像中学习特定于类的原型表示,然后通过将每个像素与学习到的原型进行匹配,对查询图像进行分割。通过非参数度量学习,PANet提供了高质量的原型,这些原型对每个语义类都具有代表性,同时对不同的类具有区别性。此外,PANet还引入了支持和查询之间的原型对齐正则化。这样,PANet充分利用了来自支持的知识,并在少镜头分割上提供了更好的泛化。值得注意的是,我们的模型在P

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

肆十二

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值