最近看SAM分割模型中多次提到了小样本图像的分割,为了能够搞清楚整个研究的思路,现在将小样本图像分割的论文内容做个笔记,用于备用。本次阅读的论文来自ICCV2019的一篇文章,用的是比较传统
文章的地址:论文地址
代码的地址:开源代码
摘要
尽管深度cnn在图像语义分割方面取得了很大的进步,但它们通常需要大量密集标注的图像进行训练,并且难以推广到看不见的对象类别。因此,开发了少量镜头分割,以学习仅从几个注释示例中执行分割。本文从度量学习的角度解决了具有挑战性的少镜头分割问题,并提出了一种新的原型对准网络PANet,以更好地利用支持集的信息。我们的PANet从嵌入空间内的一些支持图像中学习特定于类的原型表示,然后通过将每个像素与学习到的原型进行匹配,对查询图像进行分割。通过非参数度量学习,PANet提供了高质量的原型,这些原型对每个语义类都具有代表性,同时对不同的类具有区别性。此外,PANet还引入了支持和查询之间的原型对齐正则化。这样,PANet充分利用了来自支持的知识,并在少镜头分割上提供了更好的泛化。值得注意的是,我们的模型在P