【mmseg配置解析-3】 Polynomial Decay 多项式衰减

mmseg配置解析 Polynomial Decay 多项式衰减

B站:肆十二-的个人空间-肆十二-个人主页-哔哩哔哩视频 (bilibili.com)

博客:肆十二-CSDN博客

问答:(10 封私信 / 72 条消息) 肆十二 - 知乎 (zhihu.com)

Polynomial Decay(多项式衰减)是一种常用于深度学习中学习率调度的方法。在训练过程中,学习率从初始值逐步减少到一个最小值(eta_min),以帮助模型更好地收敛到最优解。Polynomial Decay 的衰减过程遵循一个多项式函数,其公式如下:

Polynomial Decay 公式

如果我们设定初始学习率为 lr_initial,最小学习率为 eta_min,训练的总步数为 max_iters,当前的步数为 current_iter,衰减的指数为 power,那么 Polynomial Decay 的学习率 lr 可以表示为:

image-20240901220841977

参数解释

  • lr_initial:初始学习率,训练开始时的学习率。
  • eta_min:最小学习率,训练结束时的学习率。
  • current_iter:当前的迭代次数。
  • max_iters:总迭代次数,训练的总步数。
  • power:多项式的幂次,控制衰减曲线的形状。power 越大,学习率衰减越慢;power 越小,学习率衰减越快。

举例说明

假设我们有以下参数:

  • 初始学习率 lr_initial = 0.1
  • 最小学习率 eta_min = 0.001
  • 总迭代次数 max_iters = 1000
  • 当前迭代次数 current_iter = 500
  • 衰减指数 power = 2 (表示二次衰减)

根据上述公式,学习率 lr 可以计算为:
l r = ( 0.1 − 0.001 ) × ( 1 − 5001000 ) 2 + 0.001 l r = ( 0.1 − 0.001 ) × ( 1 − 500 1000 ) 2 + 0.001 l r = ( 0.1 − 0.001 ) × ( 1 − 1000500 ) 2 + 0.001 lr=(0.1−0.001)×(1−5001000)2+0.001lr = (0.1 - 0.001) \times \left(1 - \frac{500}{1000}\right)^{2} + 0.001lr=(0.1−0.001)×(1−1000500)2+0.001 lr=(0.10.001)×(15001000

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

肆十二

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值