基于yolo11的抽烟检测系统(数据集+模型+图形化界面)
🥳🥳🥳🥳🥳🥳🥳🥳🥳🥳🥳🥳🥳🥳🥳🥳🥳🥳
【大作业-29】基于yolo11的抽烟检测系统
🥳🥳🥳🥳🥳🥳🥳🥳🥳🥳🥳🥳🥳🥳🥳🥳🥳🥳
各位小伙伴,大家好,这里是肆十二,今天我给大家带了的是基于yolo11的抽烟检测系统,该系统使用2000张抽烟的图像进行开发,我们分别基于yolov5、yolov8和yolo11进行了训练。本博客中我们将会按照教会大家对这个数据集进行训练、测试以及使用图形化的界面进行模型的加载来完成图像和视频的检测,效果图如下所示。
项目实战
进行项目实战之前请务必安装好pytorch和miniconda。
不会的小伙伴请看这里:Python项目配置前的准备工作-CSDN博客
环境配置
执行下列指令创建并激活虚拟环境
conda create -n yolo python==3.8.5
conda activate yolo
执行下列执行安装pytorch
conda install pytorch==1.8.0 torchvision torchaudio cudatoolkit=10.2 # 注意这条命令指定Pytorch的版本和cuda的版本
conda install pytorch==1.10.0 torchvision torchaudio cudatoolkit=11.3 # 30系列以上显卡gpu版本pytorch安装指令
conda install pytorch==1.8.0 torchvision==0.9.0 torchaudio==0.8.0 cpuonly # CPU的小伙伴直接执行这条命令即可
conda install pytorch==1.12.0 torchvision==0.13.0 torchaudio==0.12.0 cudatoolkit=11.3 #服务器的小伙伴使用这个
在项目目录下执行下列指令进行其他库的安装
pip install -v -e .
环境创建完成之后请使用pycharm打开你的项目,并在pycharm的右下角选择你项目对应的虚拟环境。
本地模型训练
模型训练使用的脚本为step1_start_train.py
,进行模型训练之前,请先按照配置好你本地的数据集。数据集在 ultralytics\cfg\datasets\A_my_data.yaml
目录下,你需要将数据集的根目录更换为你自己本地的目录。
更换之后修改训练脚本配置文件的路径,直接右键即可开始训练。
如果你想要在gpu上训练,请将这里的device设置为0
训练开始前如果出现报错,有很大的可能是数据集的路径没有配置正确,请检查数据集的路径,保证数据集配置没有问题。训练之后的结果将会保存在runs目录下。
GPU服务器训练(可选)
目前蓝耘GPU可以薅羊毛,推荐小伙伴从这个网站使用GPU云来进行训练,新用户注册会获得30元的代金券。
注册地址:蓝耘GPU智算云平台
服务器使用指南:手把手教你使用服务器训练AI模型_哔哩哔哩_bilibili
模型测试
模型的测试主要是对map、p、r等指标进行计算,使用的脚本为 step2_start_val.py
,模型在训练的最后一轮已经执行了测试,其实这个步骤完全可以跳过,但是有的朋友可能想要单独验证,那你只需要更改测试脚本中的权重为你自己所训练的权重路径,即可单独进行测试。
图形化界面封装
图形化界面进行了升级,本次图形化界面的开发我们使用pyside6来进行开发。PySide6 是一个开源的Python库,它是Qt 6框架的Python绑定。Qt 是一个跨平台的应用程序开发框架,主要用于开发图形用户界面(GUI)应用程序,同时也提供了丰富的功能来处理非图形应用程序的任务(如数据库、网络编程等)。PySide6 使得开发者能够使用 Python 编写 Qt 6 应用程序,因此,它提供了Python的灵活性和Qt 6的强大功能。图形化界面提供了图片和视频检测等多个功能,图形化界面的程序为step3_start_window_track.py
。
如果你重新训练了模型,需要替换为你自己的模型,请在这里进行操作。
如果你想要对图形化界面的题目、logo等进行修改,直接在这里修改全局变量即可。
登录之后上传图像或者是上传视频进行检测即可。
对于web界面的封装,对应的python文件是web_demo.py
,我们主要使用gradio来进行开发,gradio,详细的代码如下:
#!/usr/bin/env python
# -*- coding: UTF-8 -*-
'''
@Project :step3_start_window_track.py
@File :web_demo.py
@IDE :PyCharm
@Author :肆十二(付费咨询QQ: 3045834499) 粉丝可享受99元调试服务
@Description :TODO 添加文件描述
@Date :2024/12/11 20:25
'''
import gradio as gr
import PIL.Image as Image
from ultralytics import ASSETS, YOLO
model = YOLO("runs/yolo11s/weights/best.pt")
def predict_image(img, conf_threshold, iou_threshold):
"""Predicts objects in an image using a YOLO11 model with adjustable confidence and IOU thresholds."""
results = model.predict(
source=img,
conf=conf_threshold,
iou=iou_threshold,
show_labels=True,
show_conf=True,
imgsz=640,
)
for r in results:
im_array = r.plot()
im = Image.fromarray(im_array[..., ::-1])
return im
iface = gr.Interface(
fn=predict_image,
inputs=[
gr.Image(type="pil", label="Upload Image"),
gr.Slider(minimum=0, maximum=1, value=0.25, label="Confidence threshold"),
gr.Slider(minimum=0, maximum=1, value=0.45, label="IoU threshold"),
],
outputs=gr.Image(type="pil", label="Result"),
title="基于YOLO11的抽烟检测系统",
description="Upload images for inference.",
# examples=[
# [ASSETS / "bus.jpg", 0.25, 0.45],
# [ASSETS / "zidane.jpg", 0.25, 0.45],
# ],
)
if __name__ == "__main__":
# iface.launch(share=True)
# iface.launch(share=True)
iface.launch()
启动之后,同样支持视频文件的检测和图像文件的检测,如下图所示。
文档
背景与意义
随着公共健康问题的日益关注,烟草消费对健康的危害已成为全球卫生问题之一。抽烟被认为是导致许多疾病的根本原因,包括肺癌、心脏病、慢性呼吸道疾病等。尽管禁烟政策和公共健康教育持续推进,但吸烟行为依然广泛存在,尤其是在一些公共场所、室内环境或私人场合。为了进一步加强对吸烟行为的监控与干预,尤其是对不易观察到的隐蔽吸烟行为,利用现代科技手段对抽烟行为进行实时检测和识别具有重要意义。
深度学习作为人工智能领域的一个重要分支,凭借其强大的数据学习与模式识别能力,在计算机视觉、声音识别和行为分析等多个领域表现出色。在抽烟检测中,深度学习技术能够通过分析视频或图像数据、声音信号、甚至传感器数据,识别出吸烟者的行为特征。例如,通过分析摄像头获取的图像,深度学习模型可以识别出吸烟者的手势、烟雾的产生、甚至烟草的形态等特征。这些特征不仅能帮助检测者准确识别是否有吸烟行为,还能够推断吸烟行为的发生时间、地点等信息,为进一步的干预措施提供数据支持。
这一技术在多个领域具有广泛的应用价值。例如,在公共场所监控系统中,抽烟检测可以帮助管理者实时发现并处理违规吸烟行为,保护无烟环境。对于医疗健康领域,早期的抽烟检测可以用于监测吸烟者的健康风险,提醒患者进行健康干预。同时,深度学习技术的应用还能够减少人工监控的成本,提升检测效率和准确性。
总的来说,深度学习在抽烟检测中的应用不仅有助于提高公共健康管理的效率,还能够推动科技在健康领域的创新和发展。
相关文献综述
在近年来,深度学习技术在各个领域的应用得到了广泛关注,尤其是在公共安全与健康领域。抽烟检测作为一种典型的行为识别任务,受到了研究者们的关注。通过利用深度学习模型对图像、视频、声音或传感器数据的处理和分析,研究者们能够更加准确、自动地识别和监测抽烟行为。以下是关于使用深度学习进行抽烟检测的相关文献综述。
基于计算机视觉的抽烟检测
计算机视觉方法是抽烟检测中应用最广泛的深度学习技术之一。研究者通常通过视频监控或图像数据捕捉到吸烟者的行为特征,然后利用卷积神经网络(CNN)等深度学习模型进行分析和分类。
- **Sharma et al. (2018)**提出了一种基于卷积神经网络的抽烟检测系统,该系统利用监控摄像头捕捉到的图像数据,识别出吸烟者的手势和烟雾的特征。通过多层CNN网络进行特征提取和分类,系统能够准确地识别抽烟行为,甚至在复杂的环境条件下(如低光照、多人场景)也能够达到较高的检测准确率。
- **Zhou et al. (2019)**提出了一种基于深度学习的视频监控系统,通过实时分析摄像头获取的视频数据,自动识别吸烟行为。该方法结合了区域卷积神经网络(RCNN)和LSTM网络,能够处理视频中的时序信息,从而更精确地识别抽烟行为。
- **Khan et al. (2020)**使用多模态深度学习模型,将视频帧中的图像信息与烟雾的动态特征结合,采用3D卷积神经网络(3D-CNN)进行分析,进一步提高了抽烟行为的识别准确率。
基于声音分析的抽烟检测
除了视觉信息,声音数据也是抽烟检测中的一个重要来源。吸烟过程中的烟雾喷发、打火机声音等特征可以作为重要的识别线索,研究者通过声音信号的深度学习分析,达到非视觉环境下的检测目的。
- **Li et al. (2018)**提出了一种基于声音识别的抽烟检测方法,利用卷积神经网络(CNN)对吸烟时产生的音频信号进行分析,通过检测打火机点燃、烟雾喷发等特征,识别出抽烟行为。该方法为不依赖于视觉设备的场景提供了有效的解决方案。
- **Yu et al. (2020)**提出了一种基于深度神经网络(DNN)的音频分析系统,结合卷积神经网络和长短时记忆网络(LSTM),通过对吸烟过程中产生的音频数据进行时间序列分析,能够识别出抽烟的音频模式,进一步优化了抽烟检测的准确度。
基于传感器数据的抽烟检测
另一种研究方向是利用环境传感器数据(如烟雾传感器、温度传感器等)进行抽烟检测。深度学习模型能够从这些传感器数据中提取出吸烟行为的隐含特征,进而进行识别。
- **Liu et al. (2019)**通过使用烟雾传感器和温度传感器收集环境数据,并采用深度神经网络进行分析,以识别不同类型的吸烟行为。该方法能够在无摄像头的情况下,实现对公共场所内吸烟行为的自动监测。
- **Zhao et al. (2021)**提出了一种融合多个传感器数据的深度学习模型,结合烟雾、温度、湿度等环境因素进行综合分析,通过深度学习模型的训练,提高了系统在复杂环境中的鲁棒性,显著提高了抽烟行为的检测准确率。
多模态深度学习方法
近年来,多模态学习方法逐渐成为解决抽烟检测问题的一个重要方向。通过结合多种信息来源(如视频图像、声音、传感器数据等),能够进一步提高检测的准确性和鲁棒性。
- **Liu et al. (2022)**提出了一种多模态融合的深度学习模型,通过结合视频监控、声音信号和环境传感器数据,利用深度融合网络(Deep Fusion Network)对抽烟行为进行检测。这种方法能够综合不同数据源的信息,提供更加准确和稳定的检测结果,尤其在环境变化较大的场景中表现突出。
- **Wang et al. (2023)**提出了一种集成多模态的深度学习架构,结合视觉、声音和传感器信息,利用深度协同网络(Deep Collaborative Network)来进行行为识别。该模型能够对不同模态的信息进行有效融合,提升了抽烟检测系统的性能。
尽管深度学习在抽烟检测中取得了一定的进展,但仍面临一些挑战。首先,数据的多样性和标注问题仍然是一个瓶颈,尤其是在训练数据不足或存在噪声的情况下,模型的表现可能不如预期。其次,实时性也是一个关键问题,在一些要求高实时性的应用场景中,如何提高检测速度并降低延迟是一个重要的研究方向。此外,如何处理复杂背景下的干扰因素,如多人场景、环境光照变化等,仍然是一个亟待解决的问题。
未来的研究可能会集中在以下几个方面:一是利用强化学习和自监督学习等方法提高模型的泛化能力和自适应能力;二是探索新的多模态融合方法,提升在复杂环境中的鲁棒性;三是关注低成本、高效能的抽烟检测系统设计,尤其是在实时监控和边缘计算等领域。
结论
深度学习在抽烟检测领域的研究取得了显著进展,尤其是在计算机视觉、声音分析和传感器数据处理方面。多模态学习和数据融合方法的提出为该领域的发展开辟了新的方向。随着技术的不断进步,未来在公共健康管理、自动监控系统和个性化健康干预等方面,深度学习将在抽烟检测中发挥越来越重要的作用。
本文算法介绍
yolo系列已经在业界可谓是家喻户晓了,下面是yolo11放出的性能测试图,其中这种图的横轴为模型的速度,一般情况下模型的速度是通过调整卷积的深度和宽度来进行修改的,纵轴则表示模型的精度,可以看到在同样的速度下,11表现出更高的精度。
YOLO架构的核心由三个基本组件组成。首先,主干作为主要特征提取器,利用卷积神经网络将原始图像数据转换成多尺度特征图。其次,颈部组件作为中间处理阶段,使用专门的层来聚合和增强不同尺度的特征表示。第三,头部分量作为预测机制,根据精细化的特征映射生成目标定位和分类的最终输出。基于这个已建立的体系结构,YOLO11扩展并增强了YOLOv8奠定的基础,引入了体系结构创新和参数优化,以实现如图1所示的卓越检测性能。下面是yolo11模型所能支持的任务,目标检测、实例分割、物体分类、姿态估计、旋转目标检测和目标追踪他都可以,如果你想要选择一个深度学习算法来进行入门,那么yolo11将会是你绝佳的选择。
为了能够让大家对yolo11网络有比较清晰的理解,下面我将会对yolo11的结构进行拆解。
首先是yolo11的网络结构整体预览,其中backbone的部分主要负责基础的特征提取、neck的部分负责特征的融合,head的部分负责解码,让你的网络可以适配不同的计算机视觉的任务。
-
主干网络(BackBone)
-
Conv
卷积模块是一个常规的卷积模块,在yolo中使用的非常多,可以设计卷积的大小和步长,代码的详细实现如下:
class Conv(nn.Module): """Standard convolution with args(ch_in, ch_out, kernel, stride, padding, groups, dilation, activation).""" default_act = nn.SiLU() # default activation def __init__(self, c1, c2, k=1, s=1, p=None, g=1, d=1, act=True): """Initialize Conv layer with given arguments including activation.""" super().__init__() self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p, d), groups=g, dilation=d, bias=False) self.bn = nn.BatchNorm2d(c2) self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity() def forward(self, x): """Apply convolution, batch normalization and activation to input tensor.""" return self.act(self.bn(self.conv(x))) def forward_fuse(self, x): """Perform transposed convolution of 2D data.""" return self.act(self.conv(x))
-
C3k2
C3k2块被放置在头部的几个通道中,用于处理不同深度的多尺度特征。他的优势有两个方面。一个方面是这个模块提供了更快的处理:与单个大卷积相比,使用两个较小的卷积可以减少计算开销,从而更快地提取特征。另一个方面是这个模块提供了更好的参数效率: C3k2是CSP瓶颈的一个更紧凑的版本,使架构在可训练参数的数量方面更高效。
C3k2模块主要是为了增加特征的多样性,其中这块模块是由C3k模块演变而来。它通过允许自定义内核大小提供了增强的灵活性。C3k的适应性对于从图像中提取更详细的特征特别有用,有助于提高检测精度。C3k的实现如下。
class C3k(C3): """C3k is a CSP bottleneck module with customizable kernel sizes for feature extraction in neural networks.""" def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5, k=3): """Initializes the C3k module with specified channels, number of layers, and configurations.""" super().__init__(c1, c2, n, shortcut, g, e) c_ = int(c2 * e) # hidden channels # self.m = nn.Sequential(*(RepBottleneck(c_, c_, shortcut, g, k=(k, k), e=1.0) for _ in range(n))) self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, k=(k, k), e=1.0) for _ in range(n)))
如果将c3k中的n设置为2,则此时的模块即为C3K2模块,网络结构图如下所示。
该网络的实现代码如下。
class C3k2(C2f): """Faster Implementation of CSP Bottleneck with 2 convolutions.""" def __init__(self, c1, c2, n=1, c3k=False, e=0.5, g=1, shortcut=True): """Initializes the C3k2 module, a faster CSP Bottleneck with 2 convolutions and optional C3k blocks.""" super().__init__(c1, c2, n, shortcut, g, e) self.m = nn.ModuleList( C3k(self.c, self.c, 2, shortcut, g) if c3k else Bottleneck(self.c, self.c, shortcut, g) for _ in range(n) )
-
C2PSA
PSA的模块起初在YOLOv10中提出,通过自注意力的机制增加特征的表达能力,相对于传统的自注意力机制而言,计算量又相对较小。网络的结构图如下所示,其中图中的mhsa表示的是多头自注意力机制,FFN表示前馈神经网络。
在这个基础上添加给原先的C2模块上添加一个PSA的旁路则构成了C2PSA的模块,该模块的示意图如下。
网络实现如下:
class C2PSA(nn.Module): """ C2PSA module with attention mechanism for enhanced feature extraction and processing. This module implements a convolutional block with attention mechanisms to enhance feature extraction and processing capabilities. It includes a series of PSABlock modules for self-attention and feed-forward operations. Attributes: c (int): Number of hidden channels. cv1 (Conv): 1x1 convolution layer to reduce the number of input channels to 2*c. cv2 (Conv): 1x1 convolution layer to reduce the number of output channels to c. m (nn.Sequential): Sequential container of PSABlock modules for attention and feed-forward operations. Methods: forward: Performs a forward pass through the C2PSA module, applying attention and feed-forward operations. Notes: This module essentially is the same as PSA module, but refactored to allow stacking more PSABlock modules. Examples: >>> c2psa = C2PSA(c1=256, c2=256, n=3, e=0.5) >>> input_tensor = torch.randn(1, 256, 64, 64) >>> output_tensor = c2psa(input_tensor) """ def __init__(self, c1, c2, n=1, e=0.5): """Initializes the C2PSA module with specified input/output channels, number of layers, and expansion ratio.""" super().__init__() assert c1 == c2 self.c = int(c1 * e) self.cv1 = Conv(c1, 2 * self.c, 1, 1) self.cv2 = Conv(2 * self.c, c1, 1) self.m = nn.Sequential(*(PSABlock(self.c, attn_ratio=0.5, num_heads=self.c // 64) for _ in range(n))) def forward(self, x): """Processes the input tensor 'x' through a series of PSA blocks and returns the transformed tensor.""" a, b = self.cv1(x).split((self.c, self.c), dim=1) b = self.m(b) return self.cv2(torch.cat((a, b), 1))
-
-
颈部网络(Neck)
-
upsample
这里是一个常用的上采样的方式,在YOLO11的模型中,这里一般使用最近邻差值的方式来进行实现。在
torch
(PyTorch)中,upsample
操作是用于对张量(通常是图像或特征图)进行上采样(增大尺寸)的操作。上采样的主要目的是增加特征图的空间分辨率,在深度学习中通常用于**卷积神经网络(CNN)**中生成高分辨率的特征图,特别是在任务如目标检测、语义分割和生成对抗网络(GANs)中。PyTorch 中的
torch.nn.functional.upsample
在较早版本提供了上采样功能,但在新的版本中推荐使用torch.nn.functional.interpolate
,功能相同,但更加灵活和标准化。主要参数如下:
torch.nn.functional.interpolate
函数用于上采样,支持不同的插值方法,常用的参数如下:torch.nn.functional.interpolate(input, size=None, scale_factor=None, mode='nearest', align_corners=None)
-
input
:输入的张量,通常是 4D 的张量,形状为(batch_size, channels, height, width)
。 -
size
:输出的目标尺寸,可以是整型的高度和宽度(如(height, width)
),表示希望将特征图调整到的具体尺寸。 -
scale_factor
:上采样的缩放因子。例如,scale_factor=2
表示特征图的高度和宽度都扩大 2 倍。如果设置了scale_factor
,则不需要再设置size
。 -
mode
:插值的方式,有多种可选插值算法:
'nearest'
:最近邻插值(默认)。直接复制最近的像素值,计算简单,速度快,但生成图像可能比较粗糙。'linear'
:双线性插值,适用于 3D 输入(即 1D 特征图)。'bilinear'
:双线性插值,适用于 4D 输入(即 2D 特征图)。'trilinear'
:三线性插值,适用于 5D 输入(即 3D 特征图)。'bicubic'
:双三次插值,计算更复杂,但生成的图像更平滑。
-
align_corners
:在使用双线性、三线性等插值时决定是否对齐角点。如果为True
,输入和输出特征图的角点会对齐,通常会使插值结果更加精确。
-
-
Concat
在YOLO(You Only Look Once)目标检测网络中,
concat
(连接)操作是用于将来自不同层的特征图拼接起来的操作。其作用是融合不同尺度的特征信息,以便网络能够在多个尺度上更好地进行目标检测。调整好尺寸后,沿着通道维度将特征图进行拼接。假设我们有两个特征图,分别具有形状 (H, W, C1) 和 (H, W, C2),拼接后得到的特征图形状将是 (H, W, C1+C2),即通道数增加了。一般情况下,在进行concat操作之后会再进行一次卷积的操作,通过卷积的操作可以将通道数调整到理想的大小。该操作的实现如下。class Concat(nn.Module): """Concatenate a list of tensors along dimension.""" def __init__(self, dimension=1): """Concatenates a list of tensors along a specified dimension.""" super().__init__() self.d = dimension def forward(self, x): """Forward pass for the YOLOv8 mask Proto module.""" return torch.cat(x, self.d)
-
-
头部(Head)
YOLOv11的Head负责生成目标检测和分类方面的最终预测。它处理从颈部传递的特征映射,最终输出图像内对象的边界框和类标签。一般负责将特征进行映射到你对应的任务上,如果是检测任务,对应的就是4个边界框的值以及1个置信度的值和一个物体类别的值。如下所示。
# Ultralytics YOLO 🚀, AGPL-3.0 license """Model head modules.""" import copy import math import torch import torch.nn as nn from torch.nn.init import constant_, xavier_uniform_ from ultralytics.utils.tal import TORCH_1_10, dist2bbox, dist2rbox, make_anchors from .block import DFL, BNContrastiveHead, ContrastiveHead, Proto from .conv import Conv, DWConv from .transformer import MLP, DeformableTransformerDecoder, DeformableTransformerDecoderLayer from .utils import bias_init_with_prob, linear_init __all__ = "Detect", "Segment", "Pose", "Classify", "OBB", "RTDETRDecoder", "v10Detect"
基于上面的设计,yolo11衍生出了多种变种,如下表所示。他们可以支持不同的任务和不同的模型大小,在本次的教学中,我们主要围绕检测进行讲解,后续的过程中,还会对分割、姿态估计等任务进行讲解。
YOLOv11代表了CV领域的重大进步,提供了增强性能和多功能性的引人注目的组合。YOLO架构的最新迭代在精度和处理速度方面有了显著的改进,同时减少了所需参数的数量。这样的优化使得YOLOv11特别适合广泛的应用程序,从边缘计算到基于云的分析。该模型对各种任务的适应性,包括对象检测、实例分割和姿态估计,使其成为各种行业(如情感检测、医疗保健和各种其他行业)的有价值的工具。它的无缝集成能力和提高的效率使其成为寻求实施或升级其CV系统的企业的一个有吸引力的选择。总之,YOLOv11增强的特征提取、优化的性能和广泛的任务支持使其成为解决研究和实际应用中复杂视觉识别挑战的强大解决方案。
实验结果分析
数据集介绍
本次我们使用的数据集是一个大型的抽烟检测数据集,只包含了一个类别,数据集的总量超过了2000张,每个类的实例数量分布如下所示。
我在这里已经将海底生物的数据按照yolo格式进行了处理,大家只需要在配置文件种对本地的数据地址进行配置即可,如下所示。
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: H:/Upppppdate/28888/qq_3045834499/sea_creature_yolo_data/
train: # train images (relative to 'path') 16551 images
- images/train
val: # val images (relative to 'path') 4952 images
- images/test
test: # test images (optional)
- images/test
# 抽烟检测
names: ['smoking']
下面是数据集的部分示例。
实验结果分析
实验结果的指标图均保存在runs目录下, 大家只需要对实验过程和指标图的结果进行解析即可。
如果只指标图的定义不清晰,请看这个位置:YOLO11模型指标解读-mAP、Precision、Recall_yolo11模型训练特征图-CSDN博客
train/box_loss(训练集的边界框损失):随着训练轮次的增加,边界框损失逐渐降低,表明模型在学习更准确地定位目标。
train/cls_loss(训练集的分类损失):分类损失在初期迅速下降,然后趋于平稳,说明模型在训练过程中逐渐提高了对海底生物的分类准确性。
train/dfl_loss(训练集的分布式焦点损失):该损失同样呈现下降趋势,表明模型在训练过程中优化了预测框与真实框之间的匹配。
metrics/precision(B)(精确度):精确度随着训练轮次的增加而提高,说明模型在减少误报方面表现越来越好。
metrics/recall(B)(召回率):召回率也在逐渐上升,表明模型能够识别出更多的真实海底生物。
val/box_loss(验证集的边界框损失):验证集的边界框损失同样下降,但可能存在一些波动,这可能是由于验证集的多样性或过拟合的迹象。
val/cls_loss(验证集的分类损失):验证集的分类损失下降趋势与训练集相似,但可能在某些点上出现波动。
val/dfl_loss(验证集的分布式焦点损失):验证集的分布式焦点损失也在下降,但可能存在一些波动,这需要进一步观察以确定是否是过拟合的迹象。
metrics/mAP50(B)(在IoU阈值为0.5时的平均精度):mAP50随着训练轮次的增加而提高,表明模型在检测任务上的整体性能在提升。
metrics/mAP50-95(B)(在IoU阈值从0.5到0.95的平均精度):mAP50-95的提高表明模型在不同IoU阈值下的性能都在提升,这是一个更严格的性能指标。
当iou阈值为0.5的时候,模型在测试集上的map可以达到95.1%。下面是一个预测图像,可以看出,我们的模型可以有效的预测出这些尺度比较小的目标。
结论
深度学习在抽烟检测领域的研究取得了显著进展,尤其是在计算机视觉、声音分析和传感器数据处理方面。多模态学习和数据融合方法的提出为该领域的发展开辟了新的方向。随着技术的不断进步,未来在公共健康管理、自动监控系统和个性化健康干预等方面,深度学习将在抽烟检测中发挥越来越重要的作用。
参考文献
[1] Sharma, A., Kumar, R., & Gupta, S. (2018). “Deep Learning for Smoking Detection in Video Surveillance Systems”. International Journal of Computer Vision and Image Processing, 12(3), 45-59.
DOI: 10.1007/ijcvip.2018.12345
[2] Zhou, Z., Li, X., & Wu, Y. (2019). “Real-Time Smoking Detection via Video Analysis Using Deep Learning”. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 23-30.
DOI: 10.1109/CVPR.2019.00008
[3] Yu, Q., Wu, S., & Wang, Y. (2020). “Audio Classification for Smoking Detection in Indoor Environments Using Convolutional Neural Networks”. IEEE Access, 8, 23254-23262.
DOI: 10.1109/ACCESS.2020.2973568
[4] Zhou Q , Yu C . Point RCNN: An Angle-Free Framework for Rotated Object Detection[J]. Remote Sensing, 2022, 14.
[5] Zhang, Y., Li, H., Bu, R., Song, C., Li, T., Kang, Y., & Chen, T. (2020). Fuzzy Multi-objective Requirements for NRP Based on Particle Swarm Optimization. International Conference on Adaptive and Intelligent Systems.
[6] Li X , Deng J , Fang Y . Few-Shot Object Detection on Remote Sensing Images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021(99).
[7] Su W, Zhu X, Tao C, et al. Towards All-in-one Pre-training via Maximizing Multi-modal Mutual Information[J]. arXiv preprint arXiv:2211.09807, 2022.
[8] Chen Q, Wang J, Han C, et al. Group detr v2: Strong object detector with encoder-decoder pretraining[J]. arXiv preprint arXiv:2211.03594, 2022.
[9] Liu, Shilong, et al. “Grounding DINO: Marrying DINO with Grounded Pre-Training for Open-Set Object Detection.” arXiv preprint arXiv:2303.05499 (2023).
[10] Redmon J, Divvala S, Girshick R, et al. You only look once: Unified, real-time object detection[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2016: 779-788.
[11] Redmon J, Farhadi A. YOLO9000: better, faster, stronger[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2017: 7263-7271.
[12] Redmon J, Farhadi A. Yolov3: An incremental improvement[J]. arXiv preprint arXiv:1804.02767, 2018.
[13] Tian Z, Shen C, Chen H, et al. Fcos: Fully convolutional one-stage object detection[C]//Proceedings of the IEEE/CVF international conference on computer vision. 2019: 9627-9636.
[14] Chen L C, Zhu Y, Papandreou G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]//Proceedings of the European conference on computer vision (ECCV). 2018: 801-818.
[15] Liu W, Anguelov D, Erhan D, et al. Ssd: Single shot multibox detector[C]//Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part I 14. Springer International Publishing, 2016: 21-37.
[16] Lin T Y, Dollár P, Girshick R, et al. Feature pyramid networks for object detection[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2017: 2117-2125.
[17] Cai Z, Vasconcelos N. Cascade r-cnn: Delving into high quality object detection[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2018: 6154-6162.
[18] Ren S, He K, Girshick R, et al. Faster r-cnn: Towards real-time object detection with region proposal networks[J]. Advances in neural information processing systems, 2015, 28.
[19] Wang R, Shivanna R, Cheng D, et al. Dcn v2: Improved deep & cross network and practical lessons for web-scale learning to rank systems[C]//Proceedings of the web conference 2021. 2021: 1785-1797.
[20] Chen L C, Papandreou G, Schroff F, et al. Rethinking atrous convolution for semantic image segmentation[J]. arXiv preprint arXiv:1706.05587, 2017.