简单聊一聊大模型微调技术-LoRA

简单聊一聊大模型微调技术-LoRA

B站:肆十二-的个人空间-肆十二-个人主页-哔哩哔哩视频 (bilibili.com)

博客:肆十二-CSDN博客

问答:(10 封私信 / 72 条消息) 肆十二 - 知乎 (zhihu.com)

LoRA(Low-Rank Adaptation)模型是一种用于减少深度学习模型训练中参数数量和计算资源消耗的技术。它最早是在多头注意力机制中提出的,尤其是用于大模型的微调(fine-tuning)。LoRA 的主要思想是通过引入低秩分解(low-rank decomposition),用少量参数来逼近和微调模型,从而避免直接调整整个大模型的权重。

LoRA的核心思想

LoRA 的主要贡献在于它减少了在微调大模型时需要更新的参数数量。传统的微调方法通常会更新整个模型的参数,这在处理大规模预训练模型(如 GPT-3、BERT)时非常耗费资源。LoRA 通过插入低秩矩阵到模型的某些权重矩阵中,仅更新这些低秩矩阵,而不修改原模型权重。

其基本流程如下:

  1. 假设大模型的某个权重矩阵为 ( W ),尺寸为 ( d \times d )
  2. 将这个权重矩阵表示为两个低秩矩阵的乘积 ( W + BA ),其中 ( B ) 和 ( A ) 的尺寸分别为 ( d \times r ) 和 ( r \times d ),而 ( r \ll d ),即低秩矩阵分解。
  3. 在微调过程中,保持 ( W ) 不变,只更新 ( B ) 和 ( A )。

这种方式极大地减少了需要训练的参数量,同时保持了微调的效果。

LoRA 的应用场景

LoRA 模型非常适合在以下场景中使用:

  1. 大规模预训练语言模型的微调

    • 在对像 GPT、BERT 这样的语言模型进行微调时,LoRA 可以通过更新低秩矩阵来减少需要调整的参数数量。这样可以显著降低显存消耗以及计算资源的需求,特别适合内存有限的环境。
    • 例如,微调 GPT-3 时,通过 LoRA 可以仅调整大约 0.1
### LoRA 大模型微调技术 #### 定义与背景 Low-Rank Adaptation (LoRA) 是种用于大语言模型参数高效微调技术。通过引入低秩矩阵分解的方法,在保持原有模型性能的同时显著减少训练所需的计算资源和时间[^1]。 #### 方法原理 具体来说,LoRA 技术主要基于两个核心概念: - **低秩更新**:只对部分权重矩阵施加较小规模的增量变化; - **冻结预训练层**:除了新增加的小型可训练模块外,其余大部分网络结构维持不变并固定下来不再参与反向传播过程中的梯度下降操作。 这种方法不仅能够有效降低内存占用量级至原来的千分之级别,而且还能加快收敛速度约十倍以上[^2]。 #### 实现方式 以下是 Python 中实现 LoRA 微调简单例子: ```python from peft import get_peft_model, LoraConfig, TaskType import transformers model_name_or_path = "bert-base-uncased" tokenizer_name_or_path = "bert-base-uncased" config = { 'base_model': model_name_or_path, } peft_config = LoraConfig( task_type=TaskType.SEQ_CLS, inference_mode=False, r=8, lora_alpha=32, lora_dropout=0.1 ) model = transformers.AutoModelForSequenceClassification.from_pretrained(model_name_or_path) model = get_peft_model(model, peft_config) ``` 此代码片段展示了如何配置以及获取适用于序列分类任务类型的 BERT 模型实例,并为其添加了特定于 LoRA 的设置选项来完成初始化工作流程。 #### 最佳实践建议 当采用 LoRA 进行实际项目开发时,可以考虑以下几个方面以获得更好的效果: - 合理设定超参数 `r` 和 `lora_alpha` ,这二者决定了适应组件的空间维度大小及其影响程度; - 对不同子集的数据分别测试验证最佳的学习率范围; - 尝试多种组合策略如多轮迭代优化等提高最终泛化能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

肆十二

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值