如何在windows本地部署自己的deepseek

对理论部分感兴趣的小伙伴请看这里:深入浅出视觉分割大模型SAM(原理解析+代码实践)_深入浅出视觉分割大模型sam(原理解析+代码实践)-CSDN博客

下载deepseek模型

这里我们将会借助ollma来完成不同版本deepseek模型的下载,Ollama是一个强大的本地大语言模型运行框架,它让用户能够在本地设备上轻松运行和管理各种大语言模型。你可以从他们的官方网站进行下载或者是通过github来进行下载。

官网地址为:Download Ollama on Windows

github地址为:Release v0.5.7 · ollama/ollama · GitHub

image-20250211142643104

对于国内的朋友如果下载比较慢,你可以使用下面的方式来加速下载。

比如上面的链接地址我们复制之后是下列内容。

https://github.com/ollama/ollama/releases/download/v0.5.7/OllamaSetup.exe

我们在上面地址的前方添加https://github.moeyy.xyz/,然后再复制到浏览器中进行下载即可(有可能会因为防火墙或者文件过大的问题导致下载失败)

https://github.moeyy.xyz/https://github.com/ollama/ollama/releases/download/v0.5.7/OllamaSetup.exe

如果上述方法在你电脑上执行不成功,则可以考虑使用加速器,比如我这里使用的是奇游加速器。

image-20250211144728301

之后在在奇游的口令部分输入奇游999,即可获取72小时的加速权限。

image-20250211145100332

image-20250211145110421

在热门的位置找到deepseek专线。

### 如何在 Windows 操作系统上本地部署 DeepSeek 为了在 Windows 上成功部署 DeepSeek,需遵循一系列具体操作流程。首先,确保环境准备充分,包括必要的软件和库安装。 #### 准备工作 - **Git 工具**:用于克隆项目仓库。可以通过访问 Git 的官方网站下载适合 Windows 版本的客户端[^2]。 - **Python 环境**:建议使用 Python 3.x 及以上版本,并推荐通过 Anaconda 来管理虚拟环境以及所需的包依赖关系。 - **其他依赖项**:依据项目的 `requirements.txt` 文件来安装额外所需库;通常会涉及到 TensorFlow 或 PyTorch 这样的机器学习框架以及其他辅助工具。 #### 获取源码 执行命令行指令获取最新版 DeepSeek 库: ```bash git clone https://github.com/deepseek-ai/DeepSeek-V2.git cd DeepSeek-V2 ``` 此过程将从 GitHub 下载最新的 DeepSeek V2 代码到本地计算机中。 #### 安装依赖 进入刚刚创建的工作目录后,按照提示设置合适的 Python 虚拟环境并激活它。接着可以运行如下 pip 命令来自动解析并安装所有必需的第三方模块: ```bash pip install -r requirements.txt ``` #### 启动应用 完成上述准备工作之后,可以根据实际情况修改配置文件中的参数设定(比如端口号、日志级别等),最后启动应用程序即可体验 DeepSeek 提供的各项功能和服务。 对于更详细的说明和其他高级选项,则应查阅官方提供的文档资源以获得最权威的帮助和支持信息[^1]。 更多关于常见问题及其解决方案可以在 FAQ 中找到,例如处理模型加载失败的情况或是解决性能方面的问题等等[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

肆十二

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值