deepseek、qwen等多种模型本地化部署

想要在本地部署deepseek、qwen等模型其实很简单,快跟着小编一起部署吧

1 环境搭建

1.1下载安装环境

首先我们需要搭建一个环境ollama,下载地址如下 :Ollama

点击Download

根据自己电脑的系统选择对应版本下载即可

1.2 安装环境(window为例)

可以直接点击安装包进行安装,或者 OllamaSetup.exe /DIR="d:\some\location" 指定安装路径进行安装

2、模型安装

2.1 安装步骤如下图

首先打开Models列表,选择要安装的模型,点击模型名称,在模型界面选择要安装的模型版本(

### DeepSeek Qwen 使用指南和服务介绍 #### 环境准备与硬件要求 为了在本地环境中成功运行 `deepseek-r1-distill-qwen-1.5B` 模型,需满足一定的硬件条件。具体来说,推荐使用配备有高性能 GPU 的机器来加速模型推理过程[^1]。 #### 安装依赖库 确保安装必要的 Python 库以支持模型加载和推理操作。可以通过 pip 工具快速完成这些包的安装: ```bash pip install torch transformers accelerate ``` #### 加载预训练模型 利用 Hugging Face 提供的 Transformers 库可以方便地加载已发布的 DeepSeek Qwen 模型权重文件。下面是一段简单的代码片段用于实例化该语言模型对象: ```python from transformers import AutoModelForCausalLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/deepseek-r1-distill-qwen-1.5b") model = AutoModelForCausalLM.from_pretrained("deepseek-1.5b") ``` #### 构建API接口 对于希望集成到现有系统的开发者而言,构建 RESTful API 是一种常见做法。通过 FastAPI 或 Flask 等框架能够轻松实现这一目标。这里给出基于 FastAPI 创建简单 HTTP 接口的例子: ```python from fastapi import FastAPI from pydantic import BaseModel import uvicorn app = FastAPI() class InputText(BaseModel): text: str @app.post("/predict/") async def predict(input_text: InputText): inputs = tokenizer(input_text.text, return_tensors="pt") outputs = model.generate(**inputs) result = tokenizer.decode(outputs[0], skip_special_tokens=True) return {"response": result} if __name__ == "__main__": uvicorn.run(app, host='0.0.0.0', port=8000) ``` #### 启动推理服务 除了直接调用外,还可以考虑采用更高效的服务端部署方式——比如借助 vLLM 来提供在线预测能力。只需一条命令即可启动相应的 Web 服务器[^3]: ```bash vllm serve --model deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

雨轩智能

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值