[网络安全自学篇] 二十五.Web安全学习路线及木马、病毒和防御初探

这是作者的系列网络安全自学教程,主要是关于网安工具和实践操作的在线笔记,特分享出来与博友共勉,希望您们喜欢,一起进步。前文分享了分享机器学习在安全领域的应用,并复现一个基于机器学习(逻辑回归)的恶意请求识别。这篇文章简单叙述了Web安全学习路线,并实现了最简单的木马和病毒代码,希望对读者有所帮助。

作者作为网络安全的小白,分享一些自学基础教程给大家,希望你们喜欢。同时,更希望你能与我一起操作深入进步,后续也将深入学习网络安全和系统安全知识并分享相关实验。总之,希望该系列文章对博友有所帮助,写文不容易,大神请飘过,不喜勿喷,谢谢!

PS:本文参考了千锋教育(DNSec-leo)的课程和小迪安全文章,结合自己的经验及资料进行撰写,也推荐大家阅读B站相关视频,详见参考文献。

下载地址:https://github.com/eastmountyxz/NetworkSecuritySelf-study

  • 74
    点赞
  • 328
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 36
    评论
随着互联网和信息技术的不断发展,网络安全问题也不断浮现,入侵检测和攻击识别已成为网络安全领域的重要研究内容。基于机器学习的入侵检测和攻击识别是一种新型的安全防御方式,其通过对已有攻击数据样本的学习和对未知攻击的判断,能够有效地识别并防止网络中的各种攻击。 Kdd cup99数据集是一个常用的网络入侵检测数据集,其中包含了多种攻击类型的数据,如DoS(拒绝服务)攻击、R2L(远程到本地)攻击、U2R(本地提升为超级用户)攻击和probe(探测)攻击等。在这个数据集上进行机器学习,可以有效地提高入侵检测和攻击识别的准确性和可靠性。 机器学习方法根据数据特征选取合适的算法来训练模型,生成能够判断网络数据包是否异常的模型。例如,可以使用支持向量机(SVM)、神经网络(NN)等算法来训练模型,然后对新数据进行判断,判断是否存在安全威胁。通过不断地拓展样本集并利用机器学习算法来训练模型,可以提高模型的准确率和可靠性,更好地应对新型攻击手段和威胁。 总之,基于机器学习的入侵检测和攻击识别是一种有效的网络安全防御方式,可以通过对已有攻击数据的学习和对未知攻击的判断来识别并防止网络中的各种攻击。而kdd cup99数据集作为一个常用的网络入侵检测数据集,则为机器学习方法的应用提供了重要资料。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 36
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Eastmount

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值