[网络安全自学篇] 六十二.PE文件逆向之PE文件解析、PE编辑工具使用和PE结构修改(三)

115 篇文章 3297 订阅 ¥29.90 ¥99.00

本系列虽然叫“网络安全自学篇”,但由于系统安全、软件安全与网络安全息息相关,作者同样会分享一些系统安全案例及基础工具用法,也是记录自己的成长史,希望大家喜欢,一起进步。前文分享了数字签名,采用Signtool工具对EXE文件进行签名,接着利用Asn1View、PEVie、010Editor等工具进行数据提取和分析。本文将详细介绍PE文件格式,熟悉各种PE编辑查看工具,针对目标EXE程序新增对话框等,这也为后续PE病毒和恶意代码的攻防打下扎实基础。希望这篇基础文章对您有所帮助~

使用工具:

  • PEView、Stud_PE
  • UltraEdit、010Editor
  • Ollydbg、x64dbg
  • exeScope
    待分析程序:
  • hello-2.5.exe

  • 18
    点赞
  • 45
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 10
    评论
随着互联网和信息技术的不断发展,网络安全问题也不断浮现,入侵检测和攻击识别已成为网络安全领域的重要研究内容。基于机器学习的入侵检测和攻击识别是一种新型的安全防御方式,其通过对已有攻击数据样本的学习和对未知攻击的判断,能够有效地识别并防止网络中的各种攻击。 Kdd cup99数据集是一个常用的网络入侵检测数据集,其中包含了多种攻击类型的数据,如DoS(拒绝服务)攻击、R2L(远程到本地)攻击、U2R(本地提升为超级用户)攻击和probe(探测)攻击等。在这个数据集上进行机器学习,可以有效地提高入侵检测和攻击识别的准确性和可靠性。 机器学习方法根据数据特征选取合适的算法来训练模型,生成能够判断网络数据包是否异常的模型。例如,可以使用支持向量机(SVM)、神经网络(NN)等算法来训练模型,然后对新数据进行判断,判断是否存在安全威胁。通过不断地拓展样本集并利用机器学习算法来训练模型,可以提高模型的准确率和可靠性,更好地应对新型攻击手段和威胁。 总之,基于机器学习的入侵检测和攻击识别是一种有效的网络安全防御方式,可以通过对已有攻击数据的学习和对未知攻击的判断来识别并防止网络中的各种攻击。而kdd cup99数据集作为一个常用的网络入侵检测数据集,则为机器学习方法的应用提供了重要资料。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Eastmount

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值