[系统安全] 五十.恶意家族分类 (1)基于API序列和机器学习的恶意家族分类实例详解

本文详细介绍了如何使用机器学习算法,特别是逻辑回归、SVM和随机森林,基于API序列进行恶意家族分类。首先,概述了恶意软件分析的静态和动态特征,接着展示了数据集构建和模型训练的过程,最后给出了不同模型的效果和总结。文章适合系统安全领域的初学者,旨在帮助理解恶意家族检测的实践方法。

祝小珞珞六一儿童节快乐,永远开心! 您可能之前看到过我写的类似文章,为什么还要重复撰写呢?只是想更好地帮助初学者了解病毒逆向分析和系统安全,更加成体系且不破坏之前的系列。因此,我重新开设了这个专栏,准备系统整理和深入学习系统安全、逆向分析和恶意代码检测,“系统安全”系列文章会更加聚焦,更加系统,更加深入,也是作者的慢慢成长史。换专业确实挺难的,逆向分析也是块硬骨头,但我也试试,看看自己未来四年究竟能将它学到什么程度,漫漫长征路,偏向虎山行。享受过程,一起加油~

前文详细介绍如何将Cape沙箱分析结果Report报告的API序列批量提取,主要是提取Json文件的内容并存储至指定位置。这篇文章将讲解如何学习提取的API序列特征,并构建机器学习算法实现恶意家族分类,这也是安全领域典型的任务或工作。基础性文章,希望对您有帮助,如果存在错误或不足之处,还请海涵。且看且珍惜!

机器学习分类算法基础推荐作者前文:

希望这些基础原理能更好地帮助大家做好防御和保护,基础性文章,希望对您有所帮助。作者作为网络安全的小白,分享一些自学基础教程给大家,主要是在线笔记,希望您们喜欢。同时,更希望您能与我一起操作和进步,后续将深入学习网络安全和系统安全知识并分享相关实验。总之

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Eastmount

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值